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The simultaneous production of different outputs (coproducts) is observed in the chemical, material, mineral,
and semiconductor industries among others. Often, as with microprocessors, the outputs differ in quality in

the vertical sense and firms classify the output into different grades (products). We analyze product line design
and production for a firm operating a vertical coproduct technology. We examine how the product line and
profit are influenced by the production cost and output distribution of the technology. We prove that production
cost influences product line design in a fundamentally different manner for coproduct technologies than for
uniproduct technologies where the firm can produce products independently. For example, with coproducts,
the size and length of the product line can both increase in the production cost. Contrary to the oft-held view
that variability is bad, we prove the firm benefits from a more variable output distribution if the production or
classification cost is low enough.
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1. Introduction
Coproduct production, whereby different outputs are
simultaneously produced in a single run, is a funda-
mental attribute of the process technology in a vast
array of industries. It is pervasive in many segments
of the agricultural, chemical, materials, minerals, and
semiconductor industries among others. Oftentimes,
such as the joint production of acetone and phenol
by the cumene process, the outputs have distinct end
uses, that is, they differ in a horizontal sense. In many
other cases, semiconductors, for example, unavoid-
able variations in the inputs or processing environ-
ment lead to outputs with the same basic purpose
but that vary along a dimension for which customers
have a vertical preference (“more is better”)—speed
for microprocessors, luminescence for light-emitting
diodes (LEDs), and efficiency for photovoltaic (PV)
wafers. Many important industrial products, such
as abrasives, coatings, pigments and pharmaceutical
excipients, are produced and sold as powders. Ver-
tically differentiated coproducts arise in these indus-
tries because particle characteristics, such as shape
and size, can heavily influence a product’s perfor-
mance but can be difficult to control; for example,

the process technology for industrial diamonds cre-
ates crystals of varying shapes, and shape is a key
determinant of impact strength. Hereafter, we will use
the terms horizontal or vertical to distinguish between
coproduct technologies when necessary.

Classification, the sorting of an output stream by
quality, is an important marketing and operations
strategy for firms reliant on vertical coproduct tech-
nologies. In its simplest form (which we will call “sep-
aration”), a firm separates the output into two streams
and sells only the stream that meets some specified
quality threshold, for example, maximum particle size
for ultrafine nickel powder (JFE Mineral Company
2005). A more sophisticated version involves splitting
the output into multiple quality grades as is done
for microprocessors, LEDs, PV wafers, liquid crys-
tal displays, and industrial diamonds; this is called
“binning” in the semiconductor industry, with differ-
ent bins referring to different grades. Classification
is predicated on the willingness of customers to pay
higher prices for higher-quality products and on the
ability of the firm to sort its output by quality. This
highlights the interdependence of marketing, opera-
tions, and process development in coproduct firms.
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Product line design (choosing how many and what
quality grades to offer and their associated prices)
must reflect process characteristics (the output distri-
bution) and operations capabilities (production and
classification costs) in addition to customers’ qual-
ity valuations. Production decisions (what quantity
to produce) cannot be separated from product line
design or process characteristics. Process innovation
(designing a “better” process) cannot be evaluated in
isolation of the firm’s classification strategy.

In this paper we analytically examine the product
line design and production decisions of a monopoly
firm that operates a vertical coproduct technology. We
assume that each customer represents a very small
fraction of the firm’s overall demand, and so the
customer base can be represented as a multitude of
infinitesimal entities. We explore how the firm’s prod-
uct line and profit are influenced by the cost and
output characteristics of the process technology. The
extant literature on product line design (reviewed
below) implicitly adopts a “uniproduct” technology
paradigm in which the firm can produce each product
independently; this is not possible with coproducts
because the relative quantity produced of each prod-
uct depends on the technology’s output distribution
and the firm’s product line design choice. We show
that quality availability, that is, the constraint on rel-
ative supplies, replaces costliness of quality as a fun-
damental driver of product line design. Furthermore,
this leads to diametrically opposed findings to those
in the uni-product technology literature. For exam-
ple, different from Netessine and Taylor (2007), we
show that the size and length of the product line,
that is, the number of products offered and the dif-
ference in quality between highest and lowest quality
products, can both increase in the marginal produc-
tion cost rather than decrease. They always increase
if the classification cost does not depend on the num-
ber of grades, but can decrease otherwise. Contrary
to the oft-held view in process improvement that
variability reduction is desirable, we prove that the
firm can strictly benefit from a more variable output
distribution (in the mean-preserving spread sense) if
its production or classification cost is low enough.
This implies that a process innovation that leads to
a lower-mean/higher-variance process can be a strict
improvement. We show that the capability to classify
into multiple grades (rather than separating into one
grade) is particularly important if production costs
are high.

The remainder of this paper is organized as fol-
lows. Section 2 reviews relevant literature. Section 3
describes the model. Section 4 analyzes the pricing,
grade specification, and production decisions. Sec-
tion 5 explores the influence of the process technology
(cost and output distribution) on profits and product

line design. Section 6 extends our results to allow
for randomness in the underlying output distribu-
tion. Section 7 concludes. All proofs are given in the
appendix, §A.3.

2. Literature Review
Despite its prevalence in practice, coproducts have
received surprisingly little attention in the operations
literature. Taking the product line and prices as given,
which implies product demands are exogenous, the
vertical coproduct literature has traditionally focused
on production and downward substitution whereby
demand for a lower-grade product can be satis-
fied by a higher-grade product at the lower-grade
price (Bitran and Dasu 1992, Bitran and Leong 1992,
Bitran and Gilbert 1994, Carmon and Nahmias 1994,
Gerchak et al. 1996, Nahmias and Moinzadeh 1997,
Hsu and Bassok 1999, Rao et al. 2004, Ng et al.
2012). This substitution option provides flexibility
that is valuable in the presence of demand or grade-
proportion uncertainty. Bansal and Transchel (2011)
extend this literature by allowing for customer-driven
substitution in a two-product model, whereby an
exogenous fraction of low-grade customers will buy
the high grade if the low grade is unavailable for
tactical or strategic reasons. Downward substitution,
sometimes called upgrading, has also been studied
in uniproduct settings, for example, Netessine et al.
(2002) and Shumsky and Zhang (2009).

Recently, Boyabatli et al. (2011), Boyabatli (2011),
and Boyabatli and Nguyen (2011) explored risk
management through integrated procurement and
production decisions in the context of agriculture
industries with coproduct technologies, for exam-
ple, beef, cocoa, palm, sugar, and their derivative
products. These contexts exhibit significant uncer-
tainties in demand and/or input prices, and there
exists spot markets and/or forward contracts for
input purchase and/or output delivery. Focusing
on the case of two products, these papers explore
procurement contract design (Boyabatli et al. 2011,
Boyabatli 2011) and capacity investment (Boyabatli
and Nguyen 2011) in vertical (Boyabatli et al. 2011)
or horizontal (Boyabatli 2011, Boyabatli and Nguyen
2011) coproduct technologies. Motivated by an oil-
refinery context, Dong et al. (2012) examine pro-
curement, processing and blending decisions in a
two-product horizontal coproduct model with spot
markets and intermediate-product conversion flex-
ibility. The contracting, capacity-portfolio, and/or
flexibility-investment focus of these agricultural-
product- and oil-refinery-motivated papers is very
different from our focus on product line design, pro-
duction, and process characteristics.

None of the above coproduct papers consider pric-
ing or product line design decisions, and other than
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Boyabatli et al. (2011), which assumes price-sensitive
demand and a market-clearing strategy, prices do not
vary with the quantity sold. Tomlin and Wang (2008)
explore the role of pricing and substitution in a two-
product vertical coproduct system where the prod-
uct qualities are given and quality-sensitive customers
make purchase decisions in a utility-maximizing fash-
ion. Min and Oren (1996) examine optimal alloca-
tion rules in a quite general vertical coproduct model
with utility-maximizing customers, but the produc-
tion quantity is fixed. Their formulation allows for
the possibility that the firm can choose the quality
level for each grade, but this possibility is only briefly
treated by way of a numerical example that examines
pricing in a three-product instance. Our paper extends
the coproduct literature by exploring the product line
design challenge and doing so in a manner that is
integrated with the production decision and pro-
cess characteristics. In a recently completed working
paper, Deb et al. (2012) explore product line design in
an exogenous-price coproduct setting.

The study of product variety has a rich history
in the economics and marketing literatures for both
horizontal and vertical differentiation; see Lancaster
(1990) for a review. In the vertical-differentiation set-
ting, Mussa and Rosen (1978) and Moorthy (1984)
deserve particular mention due to their consideration
of utility-maximizing, quality-sensitive customers in
product line design, an approach we adopt in this
paper. The operations literature has devoted signifi-
cant attention to managing product variety through
such strategies as quick response and delayed dif-
ferentiation; see Tayur et al. (1999) and references
therein. It has also examined how operations con-
siderations influence product line design in ver-
tical (Netessine and Taylor 2007) and horizonal
(Mendelson and Parlaktürk 2008, Alptekinoğlu and
Corbett 2008) settings. The related problem of prod-
uct assortment, that is, the selection of what products
to stock from a predetermined set, has been exten-
sively examined in the operations literature, for exam-
ple, Kök et al. (2009), Tang and Yin (2010), Pan and
Honhon (2012), and references therein.

The product line literature has implicitly adopted a
uniproduct technology paradigm that dominates the
operations literature; that is, the production technol-
ogy allows the firm to produce each product indepen-
dently so that the quantity of one product need not
have any relation to the quantity of another unless
there is a common capacity constraint.1 A tension

1 Deneckere and McAfee (1996) provide an interesting extension to
this uniproduct technology paradigm. They model a two-product
firm (high and low quality) with a uniproduct technology for the
high-quality product (i.e., no direct coproducts), but the firm can
purposely damage the high-quality product to create the inferior

arises in product line design because customers value
quality (to different degree), but this quality is costly,
that is, the marginal production cost increases in a
product’s quality. The production-quantity indepen-
dence of uniproduct technologies does not hold for
coproduct technologies (even in the absence of capac-
ity constraints) because the firm makes a single quan-
tity decision that translates to quantities of various
outputs in proportions that depend on the product
line design. This proportionality dependence renders
product line design for coproduct technologies fun-
damentally different because proportionality leads to
supply-constrained product line design and because
the choice of qualities influences the product sup-
plies.2 As we show later, this endogenous quality
availability replaces the costliness of quality as a fun-
damental driver of product line design for coproduct
technologies. This crucial distinction leads to some
directly opposite findings to those in the uniprod-
uct papers. When there are no fixed costs to adding
products to the line, it has been shown that (i) the
optimal product line is independent of the customer-
type distribution (Pan and Honhon 2012, Corollary 4,
p. 262), (ii) the firm offers only one product (the
highest quality one) if the marginal production cost
is independent of quality (Bhargava and Choudhary
2001, Theorem 1, p. 96), and (iii) the size and length
of the product line both decrease in the marginal pro-
duction cost (Netessine and Taylor 2007, Result 1,
p. 109 and Result 6, p. 112).3 We prove that none of
these results hold in our coproduct setting.

Our paper is somewhat related to the literature
on process improvement and innovation. Oftentimes,
process improvements are assumed to reduce pro-
duction costs in the economics (e.g., Spence 1984,
Lambertini and Orsini 2000), marketing (e.g., Gupta
and Loulou 1998), operations (e.g., Fine 1986, Gilbert

one. The supply of the low-quality product is constrained by the
production quantity of the high-quality one in this case. Damag-
ing allows the firm to discriminate between customers of different
valuations by offering products of different quality, and this can
benefit the firm and the customers.
2 In a uniproduct setting, Dana and Yahalom (2008) explore a
resource-constrained version of the model in Mussa and Rosen
(1978), but the resource constraint is exogenously given (as opposed
to endogenous as in our coproduct model), and its aggregate nature
does not capture individual product inventory constraints that arise
in multiproduct settings.
3 More generally, if the marginal production cost c4x5 as a function
of product quality x is given by c4x5 = cz4x5, then the results in
Bhargava and Choudhary (2001) establish that the optimal product
line is independent of c, with the product line comprising all avail-
able products if z4x5 is convex but only the highest-quality product
if z4x5 is concave. Netessine and Taylor (2007) adopt a marginal
production cost c4x5 = cx2 and refer to c as the costliness of qual-
ity in Results 1 and 6. Clearly the marginal production cost c4x5
decreases in c, and so we describe their result in terms of marginal
production cost rather than costliness of quality.
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et al. 2006), and strategy (e.g., Adner and Levinthal
2001) literatures. Other times, process innovations
increase capacity or yield; see, for example, Porteus
(1986), Pisano (1996), Hatch and Mowery (1998),
Terwiesch and Bohn (2001), Wang et al. (2010), and
references therein. In addition to production cost,
we analyze how the output distribution influences
a firm’s profit and product line to help answer the
question of what constitutes process improvement in
coproduct technologies.

In closing, we note that the recent focus on sustain-
ability in operations has brought attention to coprod-
uct technologies in relation to emissions accounting
(Keskin and Plambeck 2011) and by-product syner-
gies (Lee 2012), but environmental considerations and
opportunities are not the focus of our paper.

3. The Model
As with much of the coproduct literature, for exam-
ple, Gerchak et al. (1996), Hsu and Bassok (1999), Rao
et al. (2004), Tomlin and Wang (2008), and Boyabatli
et al. (2011), we consider a single-period model.
We next describe the production, product line, clas-
sification, and customer elements of the model. We
then conclude by summarizing the firm’s decisions.

3.1. Production
The firm operates a coproduct technology whose out-
put varies along a single attribute x, for example,
speed of microprocessors, for which “more is bet-
ter”; that is, each customer unambiguously enjoys a
higher gross utility when offered a higher quality.
Single-attribute vertical differentiation is commonly
adopted in the literature on product line design; see
Mussa and Rosen (1978), and Netessine and Taylor
(2007).4 We use the distribution F 4x5 to represent the
output quality spectrum for a production batch; F 4x5
is increasing and continuous, and F̄ 4x5 = 1 − F 4x5.
We denote f 4x5 as its density function and 6x1 x̄7 as
the support, where 0 < x < x̄. For any given interval
6xi1xj 7 ⊆ 6x1 x̄7,

∫ xj
xi
f 4x5dx represents the proportion of

outputs whose quality levels lie between xi and xj ,
and Q

∫ xj
xi
f 4x5dx represents the amount, where Q is

the production quantity. We assume that the distribu-
tion F 4x5 is deterministic, but we extend our results
to the stochastic output distribution case in §6. The
production cost CP 4Q5 is assumed to be (weakly) con-
vex in the quantity with C ′

P 4Q5 > 0. We assume unsold
material has no salvage value or disposal cost.

4 Multiple attributes may be relevant for certain products, for exam-
ple, luminescence (brightness) and chromaticity (color) for LEDs.
A single-attribute model can be viewed as choosing the product line
design for a certain value of the other attribute, for example, how
to design the luminescence grades for a particular chromaticity.

3.2. Product Line
A product line is specified by the set of grades
(or “bins”) that the firm makes available to customers;
that is, a product line (with N grades) is defined by
the vector x = 4x11x21 0 0 0 1 xN 5, where xn is (weakly)
increasing in n= 11 0 0 0 1N . For ease of notation, define
xN+1 = x̄. Grade n is the interval 6xn1xn+15. Outputs
with quality levels in 6x1x15 are abandoned. This is
without loss of generality as the firm can always set
x1 = x when designing the product line. The quan-
tity of grade n is Qn = Q6F 4xn+15 − F 4xn57. We define
the echelon quantity for grade n = 11 0 0 0 1N as the
total quantity of grades n1n+ 11 0 0 0 1N , and so QE

n =

QF̄ 4xn5. The number of grades N and their specifica-
tion x = 4x11x21 0 0 0 1 xN 5 are set by the firm.

3.3. Classification
Classifying the output requires the ability to test and
sort each unit by the quality attribute. In semiconduc-
tor contexts this is done by a machine that tests each
chip and then places it in the appropriate bin. For
powder products that are classified by particle size,
test and sorting is carried out simultaneously by pass-
ing the batch of powder through a vibrating machine
with multiple sieves whose mesh sizes correspond to
the grade specifications. Classification incurs a cost
that increases in the production quantity Q (because
the output Q has to be classified) and the number
of grades N the output is sorted into. We assume
the classification (or “binning”) cost is separable in
the quantity and the number of grades, and adopt the
cost structure CB4Q1N5 = b0 + b1Q+ b24N − 15, where
b0 represents the fixed or set up cost associated with
operating the classification technology, b1 represents
the quantity-related marginal classification cost, and
b2 represents marginal cost associated with grades, for
example, the increased processing cost due to hav-
ing an additional sieve in the powder classification
context.

3.4. Customers
We assume a deterministic population size, scaled to
one without loss of generality. Deterministic demand
is a common assumption in coproduct papers, for
example, Bitran and Gilbert (1994), Gerchak et al.
(1996), and Nahmias and Moinzadeh (1997), and
product line design papers, for example, Netessine
and Taylor (2007) and Pan and Honhon (2012). Cus-
tomers are infinitesimal and vary in their valuation
of quality. We use � ∈ 6�1 �̄7 to denote a customer’s
marginal willingness to pay for quality. Thus, upon
receiving a product with quality x, her gross util-
ity is �x. We assume that the manufacturer cannot
directly observe the customers’ preferences; thus, the
willingness to pay also corresponds to the customer’s
“type.” Each customer obtains a null (zero) utility if
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she walks away empty handed, irrespective of her
type. Customer heterogeneity is captured by a distri-
bution function G4�5, with g4�5 being its correspond-
ing density and Ḡ4�5 = 1 − G4�5. We assume that
G4 · 5 is an increasing failure rate (IFR) distribution
(Lariviere 2006).

Although each grade reflects a range of quality,
for example, grade n is the quality interval 6xn1xn+15,
we assume that customers assign the lowest qual-
ity level when evaluating a grade, for example, cus-
tomers treat grade n as having a quality of xn. In
effect, customers either do not care or ignore the pos-
sibility that they might get a quality higher than xn
when receiving grade n. This reflects contexts where
customers base their valuation of quality (of a given
grade) on its worst-case quality. This is the case with
microprocessors, for example, because customers, for
example, laptop manufacturers, assemble the micro-
processor with other components and can only guar-
antee to their customers that the processor speed
exceeds some particular level. Our results can be read-
ily adapted to cases where customers assign the high-
est quality level when evaluating a grade. In addition
to being grounded in reality, this single-point evalua-
tion assumption allows us to bypass the complicated
customers’ belief formation process. Suppose, on the
contrary, that a customer evaluates a grade by the
average quality within the grade. In such a scenario,
to form the correct (rational) expectation, each cus-
tomer needs to accurately estimate the manufacturers’
production distribution F 4x5. This is conceptually fea-
sible but hardly achievable in practice, because the
output distribution is not known by customers.

Customers make their purchasing decisions simul-
taneously. Since the supply of each grade is lim-
ited, some customers may not obtain their desired
products if the total number of requests for a grade
exceeds its supply. In the event that demand exceeds
supply we assume that the firm may use down-
ward substitution and/or customers may spill down
to their next-preferred lower-quality grade. In fact
(as discussed in the proof of Proposition 1), all our
results hold even if substitution and/or spill-down
are not allowed.

3.5. The Firm’s Decisions
The firm chooses a production quantity Q, grade
specification vector x (which includes the number of
grades N ), and price vector p to maximize its profit
ç4Q1x1p5 = R4Q1x1p5 − CP 4Q5 − CB4Q1N5, where
R4Q1x1p5 is the revenue and CP 4Q5 and CB4Q1N5 are
the production and classification (“binning”) costs,
respectively. Because there is no uncertainty in the
base model, the decision sequence is immaterial. This
is not the case in §6 when uncertainty in the output
distribution is considered. We adopt the following

conventions throughout the paper. The production
quantity Q is finite. The terms increasing and decreas-
ing are used in the weak sense.

We want to draw the reader’s attention to cer-
tain assumptions. In our model, the firm specifies the
product line and sells to a multitude of infinitesimal
customers. As such, our model does not reflect all
coproduct firms. For example, our model would be a
poor fit for the semiconductor firm Cirrus because it
produces custom chips, that is, the customer is heav-
ily involved in specification, and its sales are dom-
inated by one large customer; Apple accounted for
62% of Cirrus’s total sales in fiscal year 2012. Our
model reflects a firm that (i) produces noncustom
products, often called catalog-type products in the
semiconductor industry, and that (ii) sells to a broad
customer base. There is evidence that such firms are
relatively common in the semiconductor, LED, and
industrial diamond industries.5 Rather than explicitly
modeling downstream entities as profit-maximizing
firms, we adopt a utility function to model their pur-
chasing behavior as it relates to quality. Although
this utility approach is a simplification of reality, it
does reflect the essential feature that downstream
companies prefer higher quality to lower quality (at
the same price). We also assume that customers do
not further classify a grade purchased from the firm.
Based on conversations with managers from semi-
conductor and industrial diamond firms, this is a
reasonable assumption as additional classification by
customers is not common due to technical and eco-
nomic considerations.

4. Analysis
In this section we analyze the optimal pricing, prod-
uct line (i.e., grade specification), and production
decisions.

4.1. Pricing
We start by characterizing the customer purchasing
behavior for a given grade specification vector x.

5 Many semiconductor firms, including Analog Devices, AMD,
Freescale, Intel, and Texas Instruments (TI), are primarily catalog-
type firms and/or have significant catalog-type business units
within the company. Often, but certainly not always, the customer
base of a catalog-type company is very large and not dominated
by a few large customers. For example, according to Texas Instru-
ments (2012), they “have more than 90,000 customers and, exclud-
ing our wireless baseband products, no single customer comprises
more than 5% of our revenue.” Analog Devices (2011) state that any
one of their integrated-circuit products “can have as many as sev-
eral hundred customers.” In the case of LEDs, companies typically
sell catalog-type products and not customized LEDs. Cree (2012)
reported that no manufacturer accounted for more than 10% of its
revenue. In the case of industrial diamonds, companies are pri-
vately held, but conversations with industry participants indicate
that it is not uncommon for firms to have more than 50 customers.
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Recall that N is the number of grades. Define
4x01 p05 = 40105 as the “outside option” that a cus-
tomer obtains from not purchasing at all, and so
each customer’s outside utility is �x0 − p0 = 0. Con-
fronted with the product line x = 4x11x21 0 0 0 1 xN 5, a
type � customer chooses a grade by solving the
problem maxi=010001N 8�xi − pi9. As observed in other
vertical-quality product line design papers, for exam-
ple, Bhargava and Choudhary (2001) and Pan and
Honhon (2012), there exists a set of indifference points
8�n9 with � = �0 ≤ �1 ≤ · · · ≤ �n ≤ · · · ≤ �N ≤ �N+1 =

�̄ such that a customer with valuation � ∈ 6�n1 �n+15
has a first-choice preference for product (grade) n.
These indifference points, or cutoffs, are given by �n =

4pn − pn−15/4xn − xn−15 for n= 11 0 0 0N . A formal proof
of these statements is given by Lemma A.1 in the
appendix, §A.1. The first-choice demand for grade n
is then given by G4�n+15−G4�n5 for n= 11 0 0 0 1N .

We now turn our attention to the firm’s grade-
pricing decision. For any given production quantity
Q and grade specification vector x, the prices influ-
ence the firm’s profit only through the revenue func-
tion R4Q1x1p5. For a given price vector p, the firm’s
revenue is R4Q1x1p5 =

∑N
n=1 pnsn4Q1x1p5, where

sn4Q1x1p5 denotes the sales quantity of grade n. Let-
ting sNn 4Q1x1p5 =

∑N
i=n sn4Q1x1p5 denote the (ech-

elon) sales quantity of grades n1 0 0 0 1N , we can
express the firm’s revenue as R4Q1x1p5 =

∑N
n=14pn −

pn−15s
N
n 4Q1x1p5, where we have used the fact that

p0 = 0 by definition. Because there is a one-to-one
mapping between the cutoff vector ä and the price
vector p given by �n = 4pn − pn−15/4xn − xn−15 for n =

11 0 0 0 1N1 we can write

R4Q1x1ä5=

N
∑

n=1

�n4xn − xn−15s
N
n 4Q1x1ä5

and optimize the revenue over the cutoff vector ä
instead of the price vector p.

It is instructive to first consider the case of a firm
selling a single grade of quality x1 for which it has
infinite supply. For any given cutoff �1, the firm’s
revenue is R4x11 �15 = x1�1Ḡ4�15, where Ḡ4�15 is the
customer demand at the price x1�1. As proven in
Lemma A.1 in the appendix, the optimal cutoff is
given by �∗, where �∗ is the unique � that satisfies

�∗
=

Ḡ4�∗5

g4�∗5
0

In other words, Ḡ4�∗5 is the revenue-maximizing
quantity to sell in the infinite-supply single-grade
case. We now present the optimal cutoffs (and hence
optimal prices) for the general case. Recall that QE

n =

QF̄ 4xn5 is the echelon quantity of grade n, that is, the
total quantity of grades n1n+ 11 0 0 0 1N .

Proposition 1. For any given quantity Q and grade
specification x, the optimal cutoffs are given by �∗

n =

max8�∗1G−141 − QE
n59. Furthermore, the associated opti-

mal revenue, denoted by R4Q1x5, is given by

R4Q1x5

= xn̂�
∗Ḡ4�∗5+

N
∑

n=n̂+1

4xn − xn−15G
−141 −QE

n5Q
E
n1 (1)

where n̂4Q1x5 is the largest n ≤ N such that QE
n > Ḡ4�∗5

with n̂4Q1x5= 0 if QE
1 ≤ Ḡ4�∗5.6

To understand this proposition, let us first con-
sider its implication when N = 1. In this single-grade
case, the optimal cutoff is �∗

1 = max8�∗1G−141 −QE
1 59.

Noting that the firm sells Ḡ4�∗
15, this is equivalent

to stating that the firm should price the grade so
that demand equals supply if supply is limited, i.e.,
QE

1 < Ḡ4�∗5, but should price to sell the uncon-
strained revenue-maximizing quantity Ḡ4�∗5 other-
wise. When there is more than one grade, the optimal
cutoff for grade n depends only on the echelon
quantity QE

n = QF̄ 4xn5. For those grades with a lim-
ited echelon supply, i.e., QE

n < Ḡ4�∗5 or, equivalently,
n> n̂, the firm prices the grades so that the echelon
demand (i.e., the quantity of customers wishing to
purchase grade n or higher) matches the echelon sup-
ply. By backward recursion from N , it follows that
the firm prices grades n > n̂ so that demand for
each grade exactly matches the supply of each grade.
For grades n ≤ n̂, the echelon supply is effectively
unconstrained, and the firm prices so that the echelon
sales of these lower grades equals the unconstrained
revenue-maximizing quantity Ḡ4�∗5. This means that
the firm sets the same cutoff, �∗, for these lower
grades and, therefore, ensures no demand for grades
n < n̂. In effect, the firm “prunes” its product line
to only sell grades n ≥ n̂, where, by definition, n̂
is the highest grade whose echelon supply exceeds
the revenue-maximizing quantity Ḡ4�∗5. Because the
echelon quantities increase in the production quan-
tity Q, the firm prunes its product line more severely,
that is, restricts sales to increasingly higher grades, as
the production quantity increases for a given grade
specification vector x.

4.2. Product Line and Production Decisions
If the firm does not have classification technology,
then the firm cannot classify its output and simply
sells a single grade with a quality specification of x,
that is, the lower support of F . This “no-classification”
case is characterized in §A.1. If the firm has classi-
fication technology, then it can sort the output into

6 We use a convention that
∑N

n=N+1 hn4 · 5= 0 for any function hn4 · 5.
Thus, R4Q1x5 is well-defined at n̂4Q1x5=N .
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grades, and product line design, that is, choosing the
number of grades N and the associated specifica-
tion vector x, becomes relevant. In all that follows,
we assume the firm adopts and uses a classifica-
tion technology unless otherwise stated. Of course,
classification technology will be adopted if and only
if it delivers a profit greater than the no-classification
profit.

For a given Q, the product line design problem is
to choose N and x to maximize R4Q1x5 − CB4Q1N5,
where the revenue R4Q1x5 is given by (1). The pro-
duction cost Cp4Q5 does not depend on the product
line at a given Q. The following proposition estab-
lishes two useful properties of an optimal product
line.

Proposition 2. For any given production quantity Q
and number of grades N , an optimal specification vector
must satisfy the following properties:

(i) x∗
14Q5 ≥ xmin4Q5 where xmin4Q5 = x if Q ≤ Ḡ4�∗5

and xmin4Q5= F −161 − Ḡ4�∗5/Q7 otherwise;
(ii) x∗

n+14Q5 > x∗
n4Q5 for n= 11 0 0 0N − 1.

We know from Proposition 1 that the firm prunes
any grades whose echelon supply exceeds Ḡ4�∗5, and
these pruned grades do not influence the firm’s rev-
enue. Therefore, the firm does not benefit from grades
whose echelon supplies exceed Ḡ4�∗5, and so when
designing its product line for a fixed Q and N , it
should only select grades whose echelon supplies
do not exceed Ḡ4�∗5. This is formalized by prop-
erty (i) above: xmin4Q5 is the minimum quality level
in the output range 6x1 x̄7 such that all higher qual-
ities have echelon supplies no greater than Ḡ4�∗5.
Property (ii) states that (for any given Q and N ) the
firm will not create a degenerate grade such that
x∗
n+14Q5= x∗

n4Q5. Doing so would effectively reduce
the number of grades by one, and therefore dimin-
ish the firm’s ability to discriminate between cus-
tomers (of different quality valuations) through its
product line offering. We note that Propositions 1
and 2 together imply that there is positive supply and
positive demand for every grade in an optimal prod-
uct line (that is optimally priced), but more than that,
they imply that the supply and demand exactly match
for every grade.

Applying Propositions 1 and 2, we can write
R4Q1x5 as

R4Q1x5=

N
∑

n=1

r4Q1xn−11xn51 (2)

where

r4Q1xn−11xn5= 4xn−xn−15G
−141−QF̄ 4xn55QF̄ 4xn50 (3)

Note that r4Q1xn−11xn5 is the additional revenue
obtained by adding a grade with specification

xn > xn−1 to a preexisting grade specification vector
4x01x11 0 0 0 1 xn−15. Importantly, this incremental rev-
enue depends on the preexisting grade vector only
through the previous highest grade xn−1. In other
words, for a given production quantity Q, the rev-
enue gain from adding a higher-quality product to an
existing product line depends only on the previously
highest-quality product and not on the entire product
line.

This property allows us to formulate the product
line optimization problem (for a given quantity Q)
as a shortest-path network problem when the classi-
fication cost depends on the number of grades, i.e.,
b2 > 0. See §A.2 for the shortest-path formulation.7

We can therefore efficiently solve for the optimal x4Q5.
This algorithm needs to be run for each possible Q
when solving for the optimal production quantity.8

The optimal number of grades will decrease in b2,
and at a sufficiently high b2 the firm will offer a sin-
gle grade. This strategy, which we call a “separation
strategy,” is observed for certain powder products, for
example, ultrafine Nickel powder, in which the firm
remove particles above (or below) a certain size limit
(JFE Mineral Company 2005). We analytically char-
acterize the separation strategy, that is, the optimal
grade quality and production quantity, in §A.1.

Although the classification cost will often depend
on the number of grades, for example, size classifica-
tion of powders by sieving requires a different sieve
for each grade, there are situations in which the clas-
sification cost is (almost) independent of the number
of grades, that is, b2 ≈ 0. For example, the operational
cost of classifying semiconductors is dominated by
the cost of testing each device, and this cost does not
vary with the number of grades. We note that b2 =

0 implies there are no costs to adding grades to a
product line, and this assumption is made at times
by many product line papers, for example, Moorthy
(1984), Bhargava and Choudhary (2001), Netessine
and Taylor (2007), Pan and Honhon (2012), and oth-
ers. The following proposition proves that when
b2 = 0, the firm adopts a “complete-classification”
strategy whereby it offers a grade at every quality
point between the lowest and highest quality grades
in the product line.9

7 We are not the first to observe that shortest-path algorithms have
application in product line design; Pan and Honhon (2012), for
example, use a shortest-path algorithm to determine optimal prod-
uct assortments in a uniproduct setting.
8 Although we have not been able to establish that the profit at the
optimal x∗4Q5 is concave in Q, we can use a simple grid search
over 0 ≤ Q∗ ≤ Qmax, where Qmax is the Q such that CP 4Q5+ b1Q =

x̄�∗Ḡ4�∗5. This Qmax bound arises because x̄�∗Ḡ4�∗5 is an upper
bound on the revenue for any Q, and so the profit is negative for
Q>Qmax.
9 Even if the classification cost does not depend on the number of
grades, there may be marketing and logistics costs that increase in
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Proposition 3. If b2 = 0, then for any given Q,
(i) the optimal number of grades N ∗4Q5= �;
(ii) the lowest grade is set as x∗

14Q5 = xmin4Q5 and the
highest grade is set as x∗

N 4Q5= x̄;
(iii) the resulting revenue R4Q5 is concave in Q and

given by

R4Q5=























































QxG−141−Q5+Q
∫ x̄

x
F̄ 4x5

·G−141−QF̄ 4x55dx1 Q≤Ḡ4�∗51

F −1

(

1−
Ḡ4�∗5

Q

)

�∗Ḡ4�∗5

+Q
∫ x̄

F −141−Ḡ4�∗5/Q5
F̄ 4x5

·G−141−QF̄ 4x55dx1 Q>Ḡ4�∗53

(4)

(iv) the profit ç4Q5 = R4Q5−Cp4Q5−CB4Q1N ∗4Q55
is concave in Q.

The firm sets its highest grade equal to the max-
imum quality it can produce. For low production
quantities, it sets the lowest grade equal to the mini-
mum quality produced, and the product line exactly
matches the output spectrum 6x1 x̄7. At higher quanti-
ties, the firm benefits by discarding lower-quality out-
put, and therefore sets the lowest grade to x∗

14Q5 =

F −161 − Ḡ4�∗5/Q7; that is, the firm sets the lowest
grade so that its echelon supply exactly matches the
revenue-maximizing volume G4�∗5. Note that x∗

14Q5
increases in Q because the firm is willing to dis-
card more output as its production quantity increases.
Whether the firm’s optimal production quantity is
low or not depends on the quantity-related produc-
tion and classification costs. Part (iv) establishes that
the production-quantity decision is well behaved.
Closed-form expressions for the optimal product line,
quantity, and profit when the customer-type and out-
put distributions are both uniformly distributed are
given in §A.4.

5. Process Technology
The “management of process technology is critical to
firm strategy” in the semiconductor industry (Hatch
and Mowery 1998, p. 1462) and in many other coprod-
uct industries. A coproduct process can be charac-
terized by its production cost function CP 4Q5 and its
output distribution F 4 · 5. In this section we explore the
impact of process technology on the firm’s product
line and profit.

5.1. Process Technology and Product Line
The existing product line design literature implic-
itly assumes that the firm operates a uniproduct

the number of grades, and so we will not observe complete classifi-
cation in practice because these other costs imply b2 > 0. However,
this b2 = 0 case serves as a proxy for settings in which the fixed cost
of adding grades is very low.

technology. In that setting, the fundamental tension
in product line design is that customers value higher
quality (although to different degrees depending on
their type), but the marginal production cost of a
product depends on its quality. The first driver, that
customers value quality, exists for vertical coprod-
uct technologies, but the second does not because
the marginal production cost is independent of the
quality (grade) for coproduct technologies. However,
the ability to produce a particular quality (grade)
is constrained by the technology’s output distribu-
tion. Therefore, in coproduct technologies, quality
availability replaces the costliness of quality as a
fundamental driver of product line design. This dis-
tinction leads to very different findings for coprod-
uct and uniproduct technologies. Analogously to
Netessine and Taylor (2007), we define the length of
the product line as the difference in quality between
highest and lowest grades offered.

Proposition 4. In a coproduct technology with
Cp4Q5= cQ,

(i) the optimal product line depends on the customer-
type distribution G4 · 5 even if b2 = 0;

(ii) the optimal product line can contain multiple prod-
ucts and will never contain only the highest possible qual-
ity product;

(iii) the length of the optimal product line increases in
c if b2 = 0.

These three results (in order) are in direct con-
tradiction to the uniproduct findings of Pan and
Honhon (2012, Corollary 4, p. 262), Bhargava and
Choudhary (2001, Theorem 1, p. 96), and Netessine
and Taylor (2001, Result 6, p. 112) described in §2.
The reason for this difference lies in the fact that the
output distribution, coupled with grade specification,
creates an endogenous constraint on grade supply,
a constraint that does not exist in uniproduct tech-
nologies. The product line never contains only the
highest possible quality product because such a prod-
uct line has infinitesimal supply in total.10 To under-
stand why the product line length increases in c, let
us first consider how the production quantity Q influ-
ences product line length. The quality of the highest
grade is constant in Q if b2 = 0 (Proposition 3(ii)), and
so the product line length increases if the quality of
the lowest offered grade decreases. When Q is large,
the firm has an ample supply of all qualities, includ-
ing those at the high end of the output spectrum. It
can, therefore, discard lower-quality output and sell
only the higher end of the spectrum. When Q is small,
however, the firm cannot afford to discard the lower
end because it has a limited supply of higher-quality

10 If the output distribution is discrete rather than continuous as
assumed, then this result may not hold.
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output. Thus, the quality of the lowest offered grade
decreases as Q decreases. Equivalently, the product
line length increases as Q decreases. The optimal pro-
duction quantity decreases in the production cost c,
and so the product line length increases in c.

We conducted a numerical study (available as
supplemental material at http://dx.doi.org/10.1287/
mnsc.2013.1738) to complement our analytical results.
We varied the unit production cost c from 0001 to 0045
using a step size of 0004. For the classification costs,
we fixed b0 = 0 but varied b1 from 0%c to 10%c using
a step size 205%c and varied b2 from 00001 to 00005
using a step size 00002. We fixed the mean of the out-
put distribution F 4 · 5 as � = 100 but varied the stan-
dard deviation � from 001 to 003 using a step size of
0005 and also included � = 00001. For each parameter
setting we considered both a uniform distribution and
a normal distribution for F 4 · 5. We set the customer
distribution as G4 · 5 ∼ U40115. This factorial design
yielded 2,160 total instances. We also did a more lim-
ited study using a Beta distribution for G4 · 5.

Echoing our earlier product line length result for
b2 = 0, that is, Proposition 4(iii), we observed numer-
ically for b2 > 0 that the product line length increased
in the production cost c (unless c was very high).
Different to the uniproduct technology finding of
(Netessine and Taylor 2007, Result 1, p. 109), we also

Figure 1 Influence of Production Cost on Product Line Length and Size
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observed that the product line size, that is, the num-
ber of products/grades offered, increased in c (unless
c was very high). The product line length and size
observations are interrelated. By definition, there is a
wide range in the offered output qualities when the
product line length is large. Therefore, the firm wants
to segment the offered output into many grades so as
to maximize its revenues from a heterogeneous cus-
tomer base; the fewer grades offered, the less able the
firm is to discriminate between customers who value
quality differently. When the product line length is
small, however, there is not much range in the offered
output and segmenting it into many grades is not
very beneficial. It follows that the production cost c
has a similar directional influence on both the product
line length and size.

The effect of production cost on the product line
length and size can be quite strong. Figure 1 presents
the product line length and size as a function of the
production cost c for different values of the standard
deviation of the output distribution (with b1 = 0005c,
b2 = 00001, and the output mean fixed at 1.0). Fig-
ure 1(a) uses a uniform distribution for F 4 · 5, and Fig-
ure 1(b) uses a normal distribution. The directional
impact of the production cost and output variance are
similar at higher values of b2, but the product line
length and size are both lower because the cost of
offering more grades is higher.
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We see that the product line size and length in-
crease in the production cost c, but different from the
case of b2 = 0, the product line length can decease in
c when c is very high. The same is true for the prod-
uct line size. When there is a positive cost to offer
a grade, i.e., b2 > 0, the firm has to ensure a suffi-
ciently large revenue to justify offering a grade. The
firm only produces a small quantity Q when the pro-
duction cost is high and so the supply of very high
quality output is low. The firm reduces the quality of
the highest-offered grade so that it has enough sup-
ply to generate sufficient revenue to merit offering the
grade. Not surprisingly, Figure 1 also shows that the
product line length and size both increase as the out-
put distribution becomes more variable about a fixed
mean. That the length increases can be proven when
b2 = 0 if F 4 · 5∼ U4a1 b5 and G4 · 5∼ U40115.

5.2. Process Technology and Profit:
Process Innovation

Process innovation, whereby the firm seeks to im-
prove the production technology, is a crucial aspect
of operations strategy in many coproduct industries.
We now examine what constitutes process improve-
ment by exploring the impact of cost and output dis-
tribution on firm profit. In doing so, we consider
four strategies: no classification, separation (i.e., sin-
gle grade), complete classification, and optimal clas-
sification in which the firm can choose the number
of grades. We use the labels NC, S, CC, and OC as
shorthand for these four strategies, respectively.

Process development can reduce the production
cost CP 4 · 5 and/or alter the output distribution F 4 · 5.
While a reduction in the cost is clearly an improve-
ment (as the profit for each of the four strategies NC,
S, CC, and OC decreases as CP 4 · 5 increases), it is less
clear what constitutes an improvement in the out-
put distribution. Intuitively, if the output distribution
shifts to the right on the quality spectrum, then this
constitutes an improvement; formally if F24 · 5 first-
order stochastically dominates F14 · 5, then the profit
for each of the four strategies NC, S, CC, and OC is
higher under F24 · 5 than F14 · 5 because for any given Q
and x, the echelon quantities of all grades are higher
under F24 · 5. Process innovation may not, however,
lead to a first-order stochastically larger F 4 · 5. A new
process may have the same mean but a lower vari-
ance. To investigate the impact of changes in vari-
ance at a fixed mean, we adopt the general notion of
a mean-preserving spread (Machina and Pratt 1997),
which includes as a special case an increase in vari-
ance if the allowed F 4 · 5 are restricted to a location–
scale family (e.g., uniform and normal).

Proposition 5. Let F ↑MPS denote that F 4 · 5 becomes
more variable in the mean-preserving spread sense. In a
coproduct technology with Cp4Q5= cQ,

(i) ç∗
NC decreases as F ↑MPS;

(ii) there exists a threshold cost c̄ such that ç∗
OC

increases as F ↑MPS for any c ≤ c̄;
(iii) if b2 = 0, ç∗

OC increases as F ↑MPS for all c if F 4 · 5∼

U4a1 b5 and G4 · 5∼ U40115.

If the firm lacks a classification technology, then
a more variable output distribution (in the mean-
preserving spread sense) always reduces profit be-
cause the quality of its product diminishes as F 4 · 5
becomes more variable. Therefore, variance reduction
is a process improvement in the no-classification strat-
egy. Remarkably, this is not the case when the firm
adopts classification technology: variance amplifica-
tion is a process improvement if the production cost c
is low enough and is a process improvement for any c
if the marginal classification cost b2 = 0. The effect of a
mean preserving spread can be quite strong. Figure 2
presents the optimal-classification profit and the no-
classification profit as a function of the standard devi-
ation of the output distribution (with a mean fixed at
1.0) for different values of the production cost c (with
b1 = 0005c and b2 = 00001). Figure 2(a) uses a uniform
distribution for F 4 · 5, and Figure 2(b) uses a normal
distribution.

There are two reasons that the optimal classifica-
tion profit increases as F ↑MPS. The first reason lies
with the impact of variance on the echelon supplies
of the grades for a fixed grade specification x. Sup-
pose F14 · 5 and F24 · 5 exhibit the single-crossing prop-
erty, i.e., F24x5 ≥ F14x5 ∀x < y and F24x5≤ F14x5 ∀x ≥ y
for some y, which is true, for example, if F24 · 5 is a
mean-preserving spread of F14 · 5 (Machina and Pratt
1997). Under the single-crossing property, the echelon
supply QF̄ 4xn5 under F24 · 5 is higher (lower) than
under F14 · 5 for all n such that xn ≥ y (xn < y). Now,
the optimal production quantity increases as the pro-
duction cost c decreases, and thus the lower-bound
xmin4Q

∗5 on x∗
1 also increases. If c is low enough,

then x∗
1 ≥ y and so the echelon supplies of all grades

increase as F ↑MPS, and this supply increase benefits
the firm. The beneficial effect on echelon supplies is
only part of the story. The firm can benefit as F ↑MPS
even when production costs are high, as reflected by
Proposition 5(iii) and observed numerically for many
instances with b2 > 0. At high c, the optimal pro-
duction quantity is low enough so that x∗

n < y for
some lower grades. The echelon supply of these lower
grades decreases as F ↑MPS, but the detrimental effect
of this reduction can be dominated by the benefi-
cial effect of the increased echelon supplies of higher
grades. Moreover, because the firm can tailor its grade
vector specification x based on the output distribu-
tion, it can benefit as F ↑MPS even if the detrimental
effect would dominate at a fixed x. A more variable
output distribution enables the firm to create a prod-
uct line with a larger separation in quality between
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Figure 2 Influence of Output Standard Deviation on Profit
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the highest and lowest grades, and reminiscent of the
product line literature, for example, Deneckere and
McAfee (1996), this benefits the firm because it can
better discriminate among the heterogeneous quality-
valuation customer population. As already observed
in §5, the product line length (and size) increases as
the output variance increases.

The firm’s operations strategy becomes more so-
phisticated as it moves from no classification to sep-
aration to optimal classification, and Proposition 5
sheds light on the value of classification, which we
define as VC = ç∗

OC − ç∗
NC . When b2 = 0, Proposi-

tion 5 implies that VC increases as F ↑MPS (when
F 4 · 5 ∼ U4a1 b5 and G4 · 5 ∼ U40115). Numerically we
observed that VC also increases as F ↑MPS for b2 > 0.
Classification allows the firm to extract value from
higher-quality units rather than selling them as low-
quality units, and this benefit increases as the spread
between high and low qualities in the output distribu-
tion increases. Intuitively, then, one might also expect
that the value of multigrading, defined as VM =ç∗

OC −

ç∗
S , that is, the value of being able to offer multiple

grades instead of a single grade, should also increase
as F ↑MPS. We did observe this in our numerical
study. So, classification, whether in its simplest form
(separation) or its more sophisticated form (multiple
grades), is particularly important for process tech-
nologies with highly variable output distributions.

Although the profits of all strategies decrease in the
production cost c, they do not necessarily decrease at
the same rate. When b2 = 0, the value of classifica-
tion VC decreases in c when F 4 · 5∼ U4a1 b5 and G4 · 5∼

U40115 (proof omitted). Numerically we observed that
VC also decreases in c for b2 > 0. Interestingly, we
observed that the value of multigrading VM increases
in c. In other words, offering multiple grades is par-
ticularly important for process technologies with high
production costs. That multigrading is more beneficial
as c increases follows from the fact discussed above
that the length and size of the optimal product line
both increase in c as discarding low-quality output
becomes more expensive.

6. Uncertain Output Distribution
We now show how our results extend to the case
where the output distribution is uncertain. In par-
ticular, the output distribution is Fs4 · 5 in scenario
s = 11 0 0 0 1 S, with the probability of scenario s being �s .
The production-quantity decision is made before the
scenario is revealed, with the objective of maximizing
the expected profit. The product line and prices might
be set before (“advance”) or after (“recourse”) the sce-
nario is revealed. We assume recourse pricing and
examine advance and recourse product line design.
We first note that for a given quantity Q and product
line x, the optimal recourse prices (cutoffs) and asso-
ciated revenue Rs4Q1x5 are given by Proposition 1,
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but with the output distribution being given by the
realized Fs4 · 5, and so echelon supplies are scenario
dependent.

If x is set in recourse, then all our product line
design results from §4 and §A.1 continue to hold, but
now apply at whichever Fs4 · 5 has occurred. Because
concavity is preserved under expectation with respect
to the scenario s, the expected profits for complete
classification, no classification, and separation con-
tinue to be concave in the production quantity. The
analysis is more complicated when x is set in advance,
but all earlier product line and quantity results can be
extended to the advance case, with some appropriate
modifications. We have developed counterparts to all
the propositions in this paper for the advance case,
and they can be found (along with their proofs) in an
unabridged appendix available from the authors.

As with the deterministic output case, under
recourse product line design the firm never prunes
any of the grades it chooses to offer, that is, it never
prices an offered grade so that no customer wants it
as its first choice. This is not necessarily the case with
advance product line design. There will be at least
one scenario in which the firm will not prune any of
the grades but there may be other scenarios in which
it does; the reason being that the echelon supply of
grades are scenario dependent but grades cannot be
adapted to the scenario in the advance case.

Recourse product line design will dominate ad-
vance product line design because the firm can tailor
its product line to the realized output distribution.
Interestingly, when b2 = 0, the expected profits are the
same under both advance and recourse settings (proof
in the unabridged appendix). Complete classification,
that is, offering an infinite number of grades, is opti-
mal when b2 = 0. In this case, advance design results
in a product line that contains within its interval all
the scenario-dependent ones under recourse design.
Therefore, infinite grading along with recourse pric-
ing enables the advance line x to capture the same
revenue in any scenario s as the recourse line xs .
This expected profit equivalency result is not gener-
ally true for b2 > 0.

In the uncertain output distribution case, a pro-
cess technology is defined by the production cost
Cp4Q5 and the set of possible distributions {Fs4 · 59. The
impact of Cp4Q5 on the product line (Proposition 4)
continues to hold under both recourse and advance
product line design. With regard to the impact of
the output distribution (Proposition 5), when we say
the output becomes more variable in the uncertain
output case we mean that Fs4 · 5 becomes more vari-
able in the mean-preserving spread sense for all s,
or more generally, some Fs4 · 5 become more vari-
able while the others remain unchanged. With this
interpretation, Proposition 5 continues to hold under
both recourse and advance product line design; that

is, the no-classification expected profit decreases, but
the optimal classification expected profit can increase
as the output becomes more variable.

7. Conclusion
Coproducts are an essential attribute of the process
technology in many industries. In this paper we ana-
lyzed the product line design and production deci-
sions of a firm that operates a coproduct technology
in which the output differs in quality in the vertical
sense. We characterized the optimal prices, product
line, and production quantity. Different from uniprod-
uct technology where the firm can produce products
independently, coproduct technology influences prod-
uct line design not because of the cost of quality
but because the output distribution constrains the
firm’s ability to supply quality levels. This fundamen-
tal distinction leads to differences between the two
technology types with regard to the influence of the
customer-type distribution and production costs on
the optimal product line. For example, the size and
length of the product line both increase in the pro-
duction cost for coproduct technologies.

Process innovation is an important aspect of oper-
ations strategy in coproduct industries. We exam-
ined how a coproduct technology, characterized by
its production cost function and output distribution,
influences the firm’s profit. We formally established
the intuitive notion that a first-order stochastically
larger output distribution is a process improvement.
More surprisingly, perhaps, we proved that variability
amplification (in the mean-preserving spread sense)
is a process improvement if the production or clas-
sification costs are low enough. We showed that the
capability to classify into multiple grades (rather than
separating into one grade) is particularly important if
production costs are high.

Our model represents a firm that sells to a large
number of small customers. This reflects many practi-
cal settings but certainly not all. There are many cases
in which a coproduct firm has a small number of dom-
inant customers. It would be interesting to examine
product line design for this alternative setting by treat-
ing the firm’s direct customers as profit-maximizing
entities who cater to their downstream consumers.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/mnsc.2013.1738.
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Appendix

A.1. The No-Classification and Separation Strategies
If the firm has no classification technology, then it offers a
single grade with a quality specification of x, that is, the
lower support of F .

Proposition A.1. For the no-classification strategy,
(i) ç4Q5 is concave in Q;
(ii) if C ′

P 405 < x, then Q∗ is given by the solution to
G−141 −Q5−Q/g4G−141 −Q55=C ′

P 4Q5/x, and Q∗ = 0 other-
wise;

(iii) the optimal profit is given by ç∗ = 4xQ∗25/4G−141 −Q∗55
if CP 4Q5= cQ.

Closed-form expressions for the optimal quantity and
profit under no classification when the customer types are
uniformly distributed are given by Corollary A.2 in §A.4.

In the separation strategy the firm offers a single grade
but has classification technology and so can set the grade’s
quality specification.

Proposition A.2. For the separation strategy, if F is an IFR
distribution, then

(i) the revenue R4x11Q5 is unimodal in x1, and x∗
14Q5= x if

J 4Q1 x5 < 0 and otherwise x∗
14Q5 is the unique x1 that satisfies

J 4Q1x15= 0, where

J 4Q1x15 = QF̄ 4x15+ g4G−141 −QF̄ 4x1555

·G−141 −QF̄ 4x155

(

F̄ 4x15

x1f 4x15
− 1

)

3 (5)

(ii) the profit ç4Q5=R4x∗
14Q51Q5−CP 4Q5−CB4Q1N = 15

is concave in Q.

Similar to the complete-classification strategy, x∗
14Q5 is

increasing in Q because the firm is willing to discard
more output as its production quantity increases; see Corol-
lary A.1 in §A.3.

A.2. Product Line Design Algorithm
We can formulate the product line optimization problem
(for a given quantity Q) as a shortest-path network prob-
lem if we represent the quality interval 4xmin4Q51 x̄5 as T +1
discrete points and restrict potential grade specifications to
these quality points. See Steps 1–4 below. Because shortest-
path problems can be solved efficiently, we can use very
large values of T to effectively eliminate any precision
loss resulting from the discretization of the quality interval
4xmin4Q51 x̄5. The algorithm needs to be run for each possible
Q when solving for the optimal production quantity.

Step 1. Create a network with T + 2 nodes, labeled i =

01 0 0 0 1 T + 1, with a directed arc 4i1 j5 from every node i =

01 0 0 0 1 T to every node j > i.
Step 2. Assign the following x4i5 values to each node:

x405 = 0, x4i5 = xmin4Q5 + 4i − 1544x̄ − xmin4Q55/T 5 for i =

11 0001 T + 1.
Step 3. Assign the following costs to each arc 4i1 j5:

c4i1 j5=

{

−r4Q1x4i51 x4j551 i = 03
−r4Q1x4i51 x4j55+ b21 i > 00

Step 4. Compute the shortest path from node 0 to node
T + 1. The nodes in the shortest path, or more precisely,
the associated x4i5 values, correspond to the optimal grade
specification vector at the given Q. The optimal profit is the
absolute value of the length of the shortest path.

A.3. Proofs
Proofs have been compressed (some significantly) for rea-
sons of space. Detailed proofs are contained in an un-
abridged appendix available from the authors. Lemmas and
their proofs are given in §A.1.

A.3.1. Propositions.

Proof of Proposition 1. We have R4Q1x1ä5 =
∑N

n=1 �n4xn − xn−15s
N
n 4Q1x1ä5, where sNn 4Q1x1ä5 are the

echelon sales of grade n. The echelon inventory is QE
n =Qn+

· · ·+QN . Let Dn denote the first-choice demand for grade n.
Using Lemma A.1, Dn = G4�n+15 − G4�n5, and DN = Ḡ4�N 5.
Therefore, the echelon first-choice demand is DN

n = Dn +

· · ·+DN = Ḡ4�n5. Under the assumption that the firm down-
ward substitutes (if needed) and that unfilled customers
spill down, the sales of grades n1 0 0 0 1N is the minimum of
echelon inventory and the echelon first-choice demand, i.e.,
sNn 4Q1p1x5= min8QE

n1 Ḡ4�n59. We then have

R4Q1x1ä5=

N
∑

n=1

�n4xn − xn−15min8QE
n1 Ḡ4�n590 (6)

The firm optimizes the cutoff vector ä subject to �n ≥ �n−1
for n= 11 0 0 0 1N . We first ignore this ordering constraint but
prove that the optimal cutoffs to the unconstrained prob-
lem conform to this ordering. Observe that (6) is separable
in the �n. We can determine the optimal �n by maximizing
�n min8QE

n1 Ḡ4�n59 because xn ≥ xn−1 by definition. Because
Ḡ4�5 decreases in � and because �nḠ4�n5 is unimodal in �n
with a maximum attained at �∗

n = �∗ (see Lemma A.2), it
follows that �∗

n = max8�∗1G−141 −QE
n59. We now show that

the optimal cutoffs conform to �∗
n ≥ �∗

n−1: 1 −QE
n is increas-

ing in n because the echelon inventory QE
n is decreasing

in n. Thus, �∗
n = max8�∗1G−141−QE

n59 is increasing in n. The
echelon quantity QE

n is decreasing in n. Define n̂4Q1x5 to be
the largest 0 ≤ n≤N such that QE

n > Ḡ4�∗5 with n̂4Q1x5= 0
if QF̄ 4x15 ≤ Ḡ4�∗5. It follows that QE

n > Ḡ4�∗5 for all n ≤

n̂4Q1x5, and QE
n ≤ Ḡ4�∗5 for all n > n̂4Q1x5. Therefore, �∗

n =

�∗ for all n ≤ n̂4Q1x5, and �∗
n = G−141 − QE

n5 for all n >
n̂4Q1x5. Then, (1) follows from (6) after some algebra. This
completes the proof. �

Note that Proposition 1 is true even if spill-down does not
occur and/or if downward substitution is not used. Call the
problem with spill-down/substition P1, and the problem
without (or with limited) spill-down/substition P2. Both
problems can be set up as a nonlinear problem with ech-
elon sales as a decision variable but including constraints
(quantity and demand) on the echelon sales. P1 is a relaxed
version of P2. The optimal solution to P1 (given by Proposi-
tion 1) is in fact feasible for P2 because Proposition 1 implies
that at the optimal solution (i) first-choice demand equals
grade inventory for grades n> n̂, (ii) first-choice demand is
less than grade inventory for grade n̂, and (iii) there is no
first-choice demand for grades n= 11 0 0 0 1 n̂− 1.11 Therefore,

11 Using Lemma A.1, Dn =G4�n+15−G4�n5. Now �∗

n =G−141−QE
n5 for

all n> n̂. Thus, G4�∗

n5= 1 −QE
n and Dn = 1 −QE

n+1 − 41 −QE
n5=QE

n −

QE
n+1 =Qn; that is, first-choice demand for bucket n is exactly equal

to the inventory of bucket n for all n > n̂. Next, consider n= n̂ for
which �∗

n̂ = �∗ because �∗

n = �∗ for n≤ n̂. Thus, Dn̂ = 1−QE
n̂+1 −G4�∗5.
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there is no spill-down/substition at the optimal prices (cut-
offs), and so the optimal solution to the relaxed problem P1
is feasible (and hence optimal) for P2.

Spill-down means that a customer (whose order is not
filled) spills to her next-preferred lower grade until her order
is filled or no inventory of lower grades is available. In this
paper we do not allow spill-up whereby a customer spills
to a higher grade if her next preferred product happens to
be a higher grade. Although spill-up does not occur at the
optimal solution given in Proposition 1, this does not mean
the solution is optimal for a model with spill-up; the reason
being that P1 is not a relaxed version of a problem that
allows spill-up.

Proof of Proposition 2. The classification cost CB4Q1N5
depends on x only through N . Thus, for any given Q and N ,
maximizing R4Q1x5−CB4Q1N5 over x is equivalent to max-
imizing R4Q1x5 over x. We first prove (ii) and then (i).

(ii) Let x be such that n̂4Q1x5 = N . Using (1), we have
R4Q1x5 = xN�

∗Ḡ4�∗5 because
∑N

n=N̂+1 = 0 by convention.
Therefore, R4Q1x5 is strictly increasing in xN , and so x cannot
be optimal. Next, let x be such that 0 < n̂4Q1x5 <N . Using
(1), we have R4Q1x5= xn̂�

∗Ḡ4�∗5+
∑N

n=n̂+14xn − xn−15Q
E
nG

−1 ·

41 −QE
n5. Taking the partial derivative with respect to (w.r.t.)

xn̂ we have ¡R4Q1x5/¡xn̂ = �∗Ḡ4�∗5 − QE
n̂+1G

−141 − QE
n̂+15.

Now, QE
n̂+1G

−141 −QE
n̂+15 = �̂Ḡ4�̂5, where �̂ = G−141 −QE

n̂+15.
Therefore, ¡R4Q1x5/¡xn̂ = �∗Ḡ4�∗5 − �̂Ḡ4�̂5. Now, from
Lemma A.2, �Ḡ4�5 is unimodal in � with its maximum value
at �∗. Therefore, ¡R4Q1x5/¡xn̂ > 0 if �̂ > �∗. By definition of
n̂4Q1x5, QE

n > Ḡ4�∗5 for all n ≥ n̂. Therefore, �̂ = G−141 −

QE
n̂+15 > �∗. This proves ¡R4Q1x5/¡xn̂ > 0 for any x such

that 0 < n̂4Q1x5 < N . It then follows that an optimal x must
have n̂4Q1x5= 0. Consider an arbitrary x with n̂4Q1x5= 0.
Using (1), we can write R4Q1x5 =

∑N
n=1 r4Q1xn−11xn5,

where r4Q1xn−11xn5 = 4xn − xn−15G
−141 − QF̄ 4xn55QF̄ 4xn5.

Let x have the property that xň+1 = xň for some ň =

11 0 0 0 1N − 1. Construct a new x, denoted by xk, which
is identical to x except xň+1 = xk, where xň < xk < xň+2.
Then, R4Q1xk5 − R4Q1x5 = r4Q1xň1xk5 + r4Q1xk1xň+25 −

r4Q1xň1xň+15 − r4Q1xň+11xň+25. Now, r4Q1xň+11xň5 = 0
because xň+1 = xň. Therefore, R4Q1xk5 − R4Q1x5 =

r4Q1xň1xk5 + r4Q1xk1xň+25 − r4Q1xň1xň+25. Applying
Lemma A.4, we then have R4Q1xk5 > R4Q1x5. (Note that
we can use Lemma A.4 because QF̄ 4xň5 ≤ QF̄ 4x15 ≤ Ḡ4�∗5
as n̂4Q1x5 = 0.) Therefore, x cannot be optimal. This proves
that x∗

n+14Q5 > x∗
n4Q5 for n= 11 0 0 0 1N − 1.

(i) By definition xmin4Q5 = x if Q ≤ Ḡ4�∗5 and xmin4Q5 =

F −161 − Ḡ4�∗5/Q7 otherwise. We have already proven that
n̂4Q1x∗5 = 0. Therefore, by definition of n̂4Q1x5, we have
QF̄ 4x∗

14Q55 ≤ Ḡ4�∗5. If Q > Ḡ4�∗5, then x∗
14Q5 ≥ F −161 −

Ḡ4�∗5/Q7 = xmin4Q5. If Q ≤ Ḡ4�∗5, then xmin4Q5 = x. Recall
that x0 = 0 by definition. For any x14Q5 < x, we have
r4Q1x11x05 = x1G

−141 − Q5Q because F̄ 4x14Q55 = F̄ 4x5 = 1.
Now r4Q1x11x05 is strictly increasing in x1 in this region
and so x∗

14Q5≥ x = xmin4Q5, which completes the proof. �

Therefore, Dn̂ ≤ Qn ⇔ Ḡ4�∗5 ≤ Qn + QE
n̂+1 ⇔ Ḡ4�∗5 ≤ QE

n̂ , which is
true by definition of n̂. In other words, there is sufficient quantity of
bucket n̂ to fill first-choice demand for bucket n̂. We next consider
buckets n ≤ n̂ − 1. For these buckets �∗

n = �∗ and so Dn = G4�∗5 −

G4�∗5= 0 and there is no first-choice demand for these buckets.

Proof of Proposition 3. (i) When b2 = 0, CB4Q1N5 =

b0 + b1Q is independent of N and x̂. Therefore, the
firm selects an N and x̂ to maximize R4Q1x5. It fol-
lows from Proposition 2 and its proof that an opti-
mal x must have n̂4Q1x5 = 0. Thus, using (1), we can
write R4Q1x5 =

∑N
n=1 r4Q1xn−11xn5, where r4Q1xn−11xn5 =

4xn − xn−15G
−141 − QF̄ 4xn55QF̄ 4xn5. Let x∗4N1Q5 denote the

optimal specification vector if the firm uses N grades. Con-
struct a new x with N + 1 grades by splitting grade n into
two grades so that this new grade vector, denoted by xk4N +

11Q5, is x∗
1 < · · ·< x∗

n−1 < x∗
n < xk < x∗

n+1 < · · ·< x∗
N ; that is, xk

is the grade introduced. Then,

R4Q1xk4N + 11Q55−R4Q1x∗4N1Q55

= r4Q1x∗

n1xk5+ r4Q1xk1x
∗

n+15− r4Q1x∗

n1x
∗

n+151

and applying Lemma A.4, we then haveR4Q1xk4N +11Q55 >
R4Q1x∗4N1Q55. (Note that we can use Lemma A.4 because
QF̄ 4x∗

n5 ≤ QF̄ 4x∗
15 ≤ Ḡ4�∗5 as n̂4Q1x∗5 = 0.) We have proven

that there exists a feasible grade specification for N + 1
grades with a strictly greater revenue than for the optimal
specification for the N grade case. It follows that the optimal
revenue R4Q1x∗4N1Q55 is strictly increasing in N , which
proves part (i).

(ii) Tailoring R4Q1x5 to the case of N = �, we obtain

R4Q1x11 x̂5 = Q

(

x1F̄ 4x15G
−141 −QF̄ 4x155

+

∫ x̂

x1

F̄ 4x5G−141 −QF̄ 4x55 dx

)

1

where x̂ denotes the highest grade. Now, ¡R4Q1x11 x̂5/¡x̂ =

QF̄ 4x̂5G−141 −QF̄ 4x̂55≥ 0, and so x̂∗ = x̄. We then have

R4Q1x15 = Q

(

x1F̄ 4x15G
−141 −QF̄ 4x155

+

∫ x̄

x1

F̄ 4x5G−141 −QF̄ 4x55 dx

)

0 (7)

Taking the derivative w.r.t. x1,

¡R4Q1x15

¡x1
= Qx1f 4x15

(

−G−141 −QF̄ 4x155

+
QF̄ 4x15

g4G−141 −QF̄ 4x1555

)

0

It can be shown (see the unabridged appendix) that
¡R4Q1x15/¡x1 ≤ 0 because �∗

1 ≥ �∗ using Proposition 2(i). It is
therefore optimal to set x1 to the minimum possible value
such that �∗

1 =G−141 −QF̄ 4x155≥ �∗, which implies x∗
14Q5=

xmin4Q5, where xmin4Q5 = x if Q ≤ Ḡ4�∗5 and xmin4Q5 =

F −161 − Ḡ4�∗5/Q7 otherwise.
(iii) x ≤ F −161 − Ḡ4�∗5/Q7 ⇔ Q ≤ Ḡ4�∗5. Substituting x∗

1
into (7) yields the expression in R4Q5 expression. Please see
the unabridged appendix for proof that R4Q5 is concave.

(iv) ç4Q5 = R4Q5 − CP 4Q5 − CB4Q1N ∗4Q55. Now, CP 4Q5
is convex in Q. Also, CB4Q1N ∗4Q55= b0 + b1Q when b2 = 0,
and so linear in Q. Therefore, ç4Q5 = R4Q5 − CP 4Q5 −

CB4Q1N ∗4Q55 is concave because R4Q5 is concave in Q from
part (iii). �
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Proof of Proposition 4. (i) Proof follows from Propo-
sition 3 in which case x∗

14Q5 = xmin4Q5, where xmin4Q5 =

x if Q ≤ Ḡ4�∗5 and xmin4Q5 = F −161 − Ḡ4�∗5/Q7 otherwise.
Clearly x∗

14Q5 and hence x∗
1 is not independent of G4 · 5. This

proof was based on b2 = 0 and so x∗
1 is not independent of

G4 · 5 in general. Even if b2 > 0, the fact that x∗
1 is not inde-

pendent of G4 · 5 can be established using Proposition A.2
for example.

(ii) That the optimal product line can contain multiple
products (and will contain infinite products if b2 = 0) fol-
lows directly from Proposition 3. If the firm selects a single
grade, then, using Proposition A.2, the optimal grade (for
a given Q) is x∗

14Q5 = x if J 4Q1 x5 < 0, and otherwise x∗
14Q5

is the unique x1 that satisfies J 4Q1x15= 0, where J 4Q1x15 is
given by (5). Now, at x1 = x̄, J 4Q1 x̄5 = −g4G−14155G−1415 <
0, and so x∗

14Q5 < x̄ for all Q and so x∗
1 < x̄.

(iii) By definition, the product line length is x∗
N − x∗

1 ,
where N is the number of grades in the optimal grade spec-
ification vector x∗. When b2 = 0, the lowest grade is set as
x∗

14Q5 = xmin4Q5, and the highest grade is set as x∗
N 4Q5= x̄.

Therefore, the product line length is x̄ − xmin4Q5 at any
given Q. Now, xmin4Q5 increases in Q, and so x∗

1 = xmin4Q
∗5

decreases in c as Q∗ decreases in c. Therefore, the optimal
product line length x̄− x∗

1 increases in c. �

Proof of Proposition 5. (i) The lower support x of F 4 · 5
(weakly) decreases as F ↑MPS. Observe from the proof of
Proposition A.1 that ç′

NC4Q5 decreases in x for all Q. It
follows that çNC4Q

∗5 decreases in x, and so ç∗
NC (weakly)

decreases as F ↑MPS.
(ii) Let F24 · 5 be a mean-preserving spread of F14 · 5, and

let y denote the single-crossing point (Machina and Pratt
1997) such that F24x5≥ F14x5 ∀x < y and F24x5≤ F14x5 ∀x ≥ y.
Let Q∗ and x∗ denote the optimal production quantity and
specification vector under F14 · 5. The quantity Q∗ decreases
in c, and so xmin4Q

∗5 decreases in c. Now, x∗
1 ≥ xmin4Q

∗5
(Proposition 2), and so there exists a threshold cost c̄ such
that x∗

1 ≥ y for all c ≤ c̄. Therefore, F̄24x
∗
n5≥ F̄14x

∗
n5 for all n if

c ≤ c̄, and so the echelon quantities QF̄24x
∗
n5≥QF̄14x

∗
n5 for all

n if c ≤ c̄. Recall from (2) that R4Q1x5=
∑N

n=1 r4Q1xn−11xn5,
where r4Q1xn−11xn5 = 4xn − xn−15G

−141 − QF̄ 4xn55QF̄ 4xn5
or, equivalently, R4Q1x5 =

∑N
n=1 r4Q

E
n1xn−11xn5, where

r4Q1xn−11xn5 = 4xn − xn−15G
−141 −QE

n5Q
E
n and QE

n = QF̄ 4xn5.
Now, r4QE

n1xn−11xn5 is increasing in QE
n (Lemma A.5), and

so R4Q∗1x∗5 is higher under F24 · 5 than F14 · 5 if c ≤ c̄. Now,
as defined above, Q∗ and x∗ are optimal under F14 · 5, and so
the profit ç4Q∗1x∗5 = R4Q1x∗5 − C4Q∗5 − B4Q∗1N ∗5 under
F24 · 5 is at least as large as the optimal profit under F14 · 5 if
c ≤ c̄. (Recall that N ∗ is the number of grades in x∗.)

(iii) Complete classification is optimal for b2 = 0 (Proposi-
tion 3), and the optimal profit ç∗ is given in Corollary A.3
for F 4 · 5∼ U4a1 b5 and G4 · 5∼ U40115. If F 4 · 5∼ U4a1 b5, then
F ↑MPS is equivalent to � increasing at a constant �, where
�= 4a+ b5/2 and � = 4b− a5/42

√
35 are the mean and stan-

dard deviation of F . Proof then follows by taking derivative
of ç∗ with respect to � and verifying the derivative is pos-
itive (details omitted for reasons of space). �

Proof of Proposition A.1. (i) Because x1 = x, the echelon
inventory Q1

1 = Q, and so n̂ = 0 if Q< Ḡ4�∗5 and n̂= 1 oth-
erwise. Tailoring Proposition 1 to this no-classification case

we obtain R4Q5 = xQG−141 − Q5 if Q < Ḡ4�∗5 and R4Q5 =

x�∗Ḡ4�∗5 if Q ≥ Ḡ4�∗5. The firm’s profit is ç4Q5=R4Q5−cQ,
and this is continuous and differentiable (at the boundary
Q = Ḡ4�∗5). Using Lemma A.3, QG−141 − Q5 is concave in
Q, and so ç4Q5 is concave in Q.

(ii) The first derivative of the profit function is ç′4Q5 =

x4G−141 −Q5−Q/g4G−141 −Q555− C ′
P 4Q5 if Q < Ḡ4�∗5 and

ç′4Q5= −C ′
P 4Q5 if Q ≥ Ḡ4�∗5. Noting that ç′4Q5= x−C ′

P 405
at Q = 0 and ç′4Q5 = −C ′

P 4Q5 < 0 for Q ≥ Ḡ4�∗5, it fol-
lows from part (i) that Q∗ is given by the solution to the
first-order condition, i.e., G−141 − Q5 − Q/g4G−141 − Q55 =

C ′
P 4Q5/x if C ′

P 405 < x but Q∗ = 0 otherwise.
(iii) Q∗ < Ḡ4�∗5 and xG−141−Q∗5=xQ∗/g4G−141−Q∗55+

c from proof of (ii) when CP 4Q5 = cQ. The profit ç4Q5 =

xQG−141 − Q5 − cQ for Q < Ḡ4�∗5 from proof of part (i).
Proof follows by substitution. �

Proof of Proposition A.2. (i) The classification cost
CB4Q1N5 = b0 + b1Q + b2 when the firm pursues a separa-
tion strategy, and so the product line design x1 does not
influence CB4Q1N5. Therefore, the firm selects an x1 to max-
imize R4Q1x15. Adapting Proposition 1 to the single-grade
problem, we have

R4Q1x15=G−141−QF̄ 4x155x1QF̄ 4x151 (8)

¡R4Q1x15

¡x1
=























G−141−Q5Q1 x1<x1

Q

(

x1f4x15QF̄ 4x15

g4G−141−QF̄ 4x1555
+G−141−QF̄ 4x155

·4F̄ 4x15−x1f 4x155

)

1 x≤x1 ≤ x̄0

(9)

Recall, from Proposition 2 that x∗
14Q5 ≥ xmin4Q5, where

xmin4Q5= x if Q ≤ Ḡ4�∗5 and xmin4Q5= F −161−Ḡ4�∗5/Q7 oth-
erwise. We prove that R4Q1x15 is either monotonic or uni-
modal in x1 over x1 ≥ xmin4Q5 by proving it is unimodal over
a wider range, namely, that it unimodal over x1 ≥ x̂min4Q5
where x̂min4Q5 ≤ xmin4Q5. In particular, we define x̂min4Q5 =

xmin4Q5 if Q> Ḡ4�∗5 and x̂min4Q5= 0 ≤ x if Q< Ḡ4�∗5. Proof
that R4Q1x15 is unimodal in x1 for x1 ≥ x̂min4Q5 follows by
application of Lemma A.4 in the e-companion of Aydin and
Porteus (2008), namely, that if f 4x5 is a twice continuously
differentiable function of x ≥ x̂min, then f 4x5 is unimodal
if (a) f 4x5 is strictly increasing in x at x = x̂min, (b) f 4x5 is
strictly decreasing in x as x tends to �, and (c) f ′′4x5 < 0
at any x that satisfies f ′′4x5 = 0. In particular, we prove in
the unabridged appendix that, at any given Q, (a) R4Q1x15
is strictly increasing in x1 at x1 = x̂min4Q5, (b) R4Q1x15 is
strictly decreasing in x1 as x1 tends to its limit x̄, and
(c) ¡2R4Q1x15/¡x

2
1 < 0 at any x1 that satisfies ¡R4Q1x15/¡x1 =

0. The rest of the proposition statement follows by rearrang-
ing (9) (when x ≤ x ≤ x̄) to obtain J 4Q1x15.

(ii) Using (8), the envelope theorem, and (9) we have
(see the unabridged appendix for details) ¡ç4Q5/¡Q =

−C ′
P 4Q5 − b1 + G−141 − QF̄ 4x∗

1554F̄ 4x
∗
15

2/f 4x∗
155, where we

have dropped the dependence of x∗
1 on Q for notational

ease. Let R′4Q5 = G−141 − QF̄ 4x∗
1554F̄ 4x

∗
15

2/f 4x∗
155. To prove

that ç4Q5 is concave in Q, we only need to show that
R′′4Q5 ≤ 0 because CP 4Q5 is convex in Q. It can be shown
(see the unabridged appendix for details) that R′′4Q5 <
−4¡x∗

1/¡Q5F̄ 4x∗
15�̂

∗41 + 4F̄ 4x∗
15/f 4x

∗
15541/x

∗
1 + f ′4x∗

15/f 4x
∗
1555.

Now, because ¡x∗
1/¡Q ≥ 0 (Corollary A.1), it follows
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R′′4Q5≤ 0 is 1 + 4F̄ 4x∗
15/f 4x

∗
15581/x

∗
1 + f ′4x∗

15/f 4x
∗
159≥ 0. Rear-

ranging terms, this is equivalent to x4f 24x∗
15+ f ′4x∗

15F̄ 4x
∗
155+

F̄ 4x∗
15f 4x

∗
15≥ 0, which is equivalent to F 4 · 5 being an increas-

ing generalized failure rate (IGFR) distribution and is there-
fore satisfied if F 4 · 5 is an IFR distribution. This can also be
directly observed because f 24x∗

15+ f ′4x∗
15F̄ 4x

∗
15 ≥ 0 if F 4 · 5 is

an IFR distribution. Therefore, R′′4Q5 ≤ 0, and so ç4Q5 is
concave in Q. �

Corollary A.1. x∗
1 increases in Q.

Proof of Corollary A.1. The proof is contained in the
unabridged appendix available from authors.

A.3.2. Technical Lemmas.

Property A.1. If the customer-type distribution G4 · 5 is an
IFR distribution, then G4 · 5 satisfies 2g24�5+ Ḡ4�5g′4�5≥ 0.

Proof of Property A.1. The failure rate function is
v4�5 = g4�5/Ḡ4�5 and v′4�5 = 4Ḡ4�5g′4�5 + g24�55/Ḡ4�52.
By definition, G4 · 5 is an IFR distribution if and only if (iff)
v′4�5 ≥ 0. Therefore, Ḡ4�5g′4�5 + g24�5 ≥ 0. It follows that
2g24�5+ Ḡ4�5g′4�5≥ 0 because g4 · 5≥ 0. �

Lemma A.1. For any x, (a) there exists a set of cutoffs 8�n9
with � = �0 ≤ �1 ≤ �2 ≤ · · · ≤ �n ≤ · · · ≤ �N ≤ �N+1 = �̄ such
that a customer with valuation � ∈ 6�n1 �n+15 has a first-choice
preference for grade n. (b) Furthermore, there exists an optimal
price vector such that the set of cutoffs 8�n9 is given by �n = �nn−1
for n= 11 0 0 0 1N .

Proof of Lemma A.1. Confronted with the product line
x = 4x11x21 0 0 0 1 xN 5, a type � customer chooses a grade by
solving the problem maxi=010001N 8�xi − pi9. This corresponds
to the customers’ incentive compatibility constraint. Inci-
dentally, this also includes the individual rationality con-
straints that the resulting utility should be nonnegative,
because maxi=010001N 8�xi − pi9 ≥ 0 as 4x01 p05 = 40105. Tie
breaking when choosing a grade is arbitrary because cus-
tomers are continuously distributed in an interval; thus, the
measure of indifferent customers is zero. (a) Consider a pair
(i1 j) where i < j , and suppose that there exists a type � who
weakly prefers (xj1 pj5 to (xi1 pi), i.e., xj > xi and �xj − pj ≥

�xi − pi. Now consider an arbitrary type �̃ > �. We obtain
that �̃xj − pj = 4�̃ − �5xj + �xj − pj ≥ 4�̃ − �5xj + �xi − pi =

4�̃ − �5xj − �̃xi + �xi + �̃xi − pi = 4�̃ − �54xj − xi5+ �̃xi − pi >

�̃xi − pi, where the first inequality follows from the con-
struction of type �, and the second inequality follows from
�̃ > � and xj > xi. Thus, a type �̃ customer strictly prefers
(xj1 pj5 to (xi1 pi). As a mirror image, if there exists a type �̂
who weakly prefers (xi1 pi) to (xj1 pj5, we can show that all
types below �̂ strictly prefer (xi1 pi) to (xj1 pj5. Collectively,
if none of these two grades dominates the other, then there
must exist a customer who is indifferent between choos-
ing either grade. We label this type as �

j
i . By definition,

the following condition must be satisfied: �jixj − pj ≥ �
j
ixi −

pi ⇔ �
j
i = 4pj − pi5/4xj − xi5. All types above �

j
i strictly prefer

(xj1 pj5 to (xi1 pi), whereas all types below �
j
i strictly prefer

(xi1 pi) to (xj1 pj50 This also suggests that it is impossible to
find a set of customers whose first choice is a lower-quality
product than some set of customers with lower valuations.

Therefore, the customer valuations must separate into sets
such that the first-choice grade of customers in a higher
set is a higher grade than the first-choice grade of cus-
tomers in lower set. Labeling “grade” 0 as customers who
do not purchase, we then have the ordering specified in the
statement. (b) Consider the case in which the sets 6�n1 �n+15
are all nonempty. If �n < �nn−1, then there are customers in
6�n1 �n+15 that prefer n− 1 to n1 which is a contradiction. If
�n > �nn−1, then there exist customers in 6�n−11 �n5 that pre-
fer n to n− 1, which is also a contradiction. Therefore, we
must have �n = �nn−1. Note that part (a) does not guaran-
tee that all sets are nonempty. However, if there exist some
empty sets, then the prices of the associated grades can be
decreased without any loss of revenue and still retain the
original sets but ensuring the cutoffs are given by �n = �nn−1
for n= 11 0 0 0 1N . �

Lemma A.2. (a) �Ḡ4�5 is unimodal in �. (b) A unique �∗

exists that maximizes �Ḡ4�5, and �∗ satisfies �∗ = Ḡ4�∗5/g4�∗5.

Proof of Lemma A.2. (a) If G4 · 5 is an IFR distribution,
then G4 · 5 is IGFR (Lariviere 2006). That �Ḡ4�5 is unimodal
in � follows from (Lariviere 2006, p. 602; with � replacing p
in the �4p5 expression). (b) Let r4�5 = �Ḡ4�5. Proof follows
by setting r ′4�5 equal to 0. �

Lemma A.3. (a) H4Q5 = QG−141 − Q5 is concave in Q.
(b) H4Q5 is maximized at Q∗ = Ḡ4�∗5.

Proof of Lemma A.3. (a) Taking the second deriva-
tive of H4Q5, we have H ′′4Q5 ≤ 0 ⇔ 24g4G−141 − Q5552 +

Qg′4G−141 − Q55 ≥ 0. Letting � = G−141 − Q5 (which
implies Q = Ḡ4�5), it follows that H ′′4Q5 ≤ 0 iff 24g4�552 +

Ḡ4�5g′4�5 ≥ 0, which is true by Property A.1. There-
fore, H4Q5 = QG−141 − Q5 is concave in Q. (b) At Q =

Ḡ4�∗5, H ′4Q5 = G−14G4�∗55 − Ḡ4�∗5/g4G−14G4�∗55 = �∗ −

Ḡ4�∗5/g4�∗55 = 0, where the final equality follows from
Lemma A.2. �

Lemma A.4. For z1 < z2 and QF̄ 4z15 ≤ Ḡ4�∗5, define
r4Q1z11 z25 = 4z2 − z15G

−141 − QF̄ 4z255QF̄ 4z25. Then
r4Q1z11 z25 < r4Q1z11 zs5+ r4Q1zs1 z25 for z1 < zs < z2.

Proof of Lemma A.4. By definition, r4Q1z11 zs5 +

r4Q1zs1 z25− r4Q1z11 z25= 4zs −z154G
−141−QF̄ 4zs55QF̄ 4zs5−

G−141 −QF̄ 4z255QF̄ 4z255. Now, zs > z1, and so r4Q1z11 z25 <
r4Q1z11 zs5 + r4Q1zs1 z25 if G−141 − QF̄ 4zs55QF̄ 4zs5 >
G−141 − QF̄ 4z255QF̄ 4z25. Defining �2 = G−141 − QF̄ 4z255
and �s = G−141 − QF̄ 4zs55, it follows that r4Q1z11 z25 <
r4Q1z11 zs5 + r4Q1zs1 z25 if �2Ḡ4�25 > �sḠ4�s5. Now, from
Lemma A.2, �Ḡ4�5 is unimodal in � with its maximum
value at �∗. Therefore, r4Q1z11 z25 < r4Q1z11 zs5+r4Q1zs1 z25
if �2 > �s > �∗. Now, QF̄ 4z15 ≤ Ḡ4�∗5 and z1 < zs < z2 from
the lemma statement. Therefore, �2 > �s > �∗. �

Lemma A.5. r4QE
n1xn−11xn5 is increasing in QE

n = QF̄ 4xn5
where

r4QE
n1xn−11xn5=

{

4xn − xn−15�
∗Ḡ4�∗51 QE

n ≥ Ḡ4�∗53

4xn − xn−15G
−141 −QE

n5Q
E
n1 QE

n < Ḡ4�∗50

Proof of Lemma A.5. The incremental revenue r4QE
n1xn1

xn−15 is constant in QE
n for QE

n ≥ Ḡ4�∗5. For QE
n > Ḡ4�∗5,
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r4QE
n1xn1xn−15 = 4xn − xn−15�4Q

E
n5Ḡ4�4QE

n55, where �4QE
n5 =

G−141 −QE
n5. Now, �4QE

n5 > �∗ as QE
n ≥ Ḡ4�∗5. Furthermore,

�4QE
n5 is decreasing in QE

n . From Lemma A.2, �Ḡ4�5 is
decreasing in � for � > �∗. It then follows that r4QE

n1xn1xn−15
is increasing in QE

n because xn > xn−1. �

A.4. Expressions for Uniformly Distributed
Customer Types

Proofs of the following corollaries can be found in the
unabridged appendix. We note that � = 4a+ b5/2 and � =

4b−a5/42
√

35 are the mean and standard deviation of F 4 · 5∼

U4a1 b5, respectively. Also, ĉ = c+ b1.

Corollary A.2. For the no-classification strategy, if
CP 4Q5= cQ and G4 · 5∼ U40115, then

(i) Q∗ = 4x − c5/42x5 and ç∗ = 4x − c52/44x5 if c < x, and
Q∗ = 0 and ç∗ = 0 otherwise;

(ii) if F 4 · 5 ∼ U4a1 b5, then Q∗ = 6� − �
√

3 − c7+/
424�−�

√
355 and ç∗ = 46�−�

√
3 − c7+52/444�−�

√
355.

Corollary A.3. If b2 = 0, CP 4Q5 = cQ, and if G4 · 5 ∼

U40115 and F 4 · 5∼ U4a1 b5, then

Q∗
=



















1
2431/45

√

�

ĉ
1 0 < ĉ <

�
√

3
3

6�− ĉ7+

24�−�/
√

35
1 ĉ ≥

�
√

3
3

x∗

1 =



















�+
�2 −�

√
34�+ ĉ5

�− ĉ
1 0 < ĉ <

�
√

3
3

�−�
√

31 ĉ ≥
�
√

3
3

x∗

N =�+
√

3�3

ç∗
=























1
4

(

�+
√

3� − 4
(

1
3

)1/4√
ĉ�

)

− b01 0 < ĉ <
�
√

3
3

46�− ĉ7+52

44�−�/
√

35
− b01 ĉ ≥

�
√

3
0
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