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We connect the mix-flexibility and dual-sourcing literatures by studying unreliable supply chains that pro-
duce multiple products. We consider a firm that can invest in product-dedicated resources and totally

flexible resources. Product demands are uncertain at the time of resource investment, and the products can dif-
fer in their contribution margins. Resource investments can fail, and the firm may choose to invest in multiple
resources for a given product to mitigate such failures.
In comparing a single-source dedicated strategy with a single-source flexible strategy, we refine the common

intuition that a flexible strategy is strictly preferred to a dedicated strategy when the dedicated resources are
costlier than the flexible resource. We prove that this intuition is correct if the firm is risk neutral or if the
resource investments are perfectly reliable. The intuition can be wrong, however, if both of these conditions
fail to hold, because there is a resource-aggregation disadvantage to the flexible strategy that can dominate
the demand pooling and contribution-margin benefits of the flexible strategy when resource investments are
unreliable and the firm is risk averse.
We investigate the influence that resource attributes, firm attributes, and product-portfolio attributes have on

the attractiveness of various supply-chain structures that differ in their levels of mix flexibility and diversifica-
tion, and we investigate the influence these attributes have on the optimal resource investments within a given
supply-chain structure. Our results indicate that the appropriate levels of diversification and flexibility are very
sensitive to the resource costs and reliabilities, the firm’s downside risk tolerance, the number of products, the
product demand correlations and the spread in product contribution margins.

Key words : reliability; flexibility; dual sourcing; loss aversion; risk
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1. Introduction
It is well established, both in the literature and
in practice, that resource flexibility is advantageous
for firms that sell multiple products with uncertain
demand, and that dual sourcing is advantageous for
firms that face uncertainty in supply. Research to date,
however, has studied these supply-chain strategies in
isolation: The mix-flexibility literature has assumed
perfectly reliable supply, and the dual-sourcing liter-
ature has focused on single-product problems.
Consider a firm selling multiple products that dif-

fer in their contribution margins (sales price less vari-
able costs) and have uncertain demands. The firm
might invest in product-dedicated resources only, or,
alternatively, it might invest in one single flexible
resource that can produce all products. The dedicated
resources might be cheaper but the flexible strategy

offers a demand-pooling benefit and a contribution-
margin option benefit (Van Mieghem 1998). There is,
however, a resource-aggregation disadvantage to the
flexible strategy that to the best of our knowledge
has been ignored in the mix-flexibility literature. A
single failure in the flexible strategy leaves the firm
with no productive resource, whereas with the dedi-
cated strategy all resources must fail for the firm to
be in similar straits. Supply uncertainty, by which we
mean that the realized resource investment may dif-
fer from the target investment, should therefore influ-
ence the firm’s preference for either a dedicated or
flexible strategy. The firm, of course, is not limited to
these two strategies, and it may want to consider dual
sourcing for one or more products to protect itself
against supply uncertainties. The goal of this paper
is to simultaneously study mix flexibility and dual
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Figure 1 Four Network Structures
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sourcing to provide insight into effective supply-chain
design in the presence of supply and demand uncer-
tainties.
Figure 1 illustrates four canonical network struc-

tures for a firm that sells N products. Circles represent
products, squares represent resources, and arcs repre-
sent the ability of a resource to fulfill demand for a
product. SD represents a single-source dedicated net-
work, SF represents a single-source flexible network,
DD represents a dual-source dedicated network, and
DF represents a dual source flexible network. We note
that these structures represent possible sourcing deci-
sions rather than actual decisions, and so a firm with a
DD or a DF network may choose to single source one
or more products, even though it could dual source
them.
The dual-sourcing networks (DD and DF) offer

diversification benefits that are advantageous in the
presence of unreliable resource investments. The flex-
ible strategies (SF and DF) offer demand-pooling and
contribution-margin benefits that are advantageous in
the presence of demand uncertainty. The demand-
pooling benefit arises only if demands are not per-
fectly positively correlated. The contribution-margin
benefit arises only if product contribution margins

differ. In the presence of supply uncertainty, there
is a resource-aggregation disadvantage to a flexible
resource. In general, the desirability of any of the four
networks will be influenced by resource investment
costs, resource reliabilities, product contribution mar-
gins, demand correlations, and the firm’s attitudes
toward risk.
Mix flexibility, whereby a resource has the ability

to produce multiple products, has been investigated
in the operations literature as a design strategy
for firms that sell multiple products with uncer-
tain demand. Hereafter, we will simply use the term
flexibility rather than mix flexibility. Such literature
has primarily focused on single-period (newsvendor
type) investments in dedicated and totally flexible
resources, and that is the focus of this paper. We refer
the reader to Jordan and Graves (1995), Graves and
Tomlin (2003), and Muriel et al. (2004) for treatments
of partial flexibility. For single-period investments in
dedicated and totally flexible resources, Van Mieghem
(2004a) establishes that component commonality and
resource flexibility are distinctions without a differ-
ence; the problems can be shown to be mathemati-
cally equivalent. As such, we use the term resource
with the understanding that the resource in question
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might be inventory or capacity. The resource may be
produced in house or may be provided by an outside
supplier.
The archetypal total-flexibility model (e.g., Fine and

Freund 1990) is a single-period, N product, uncertain-
demand model in which a risk-neutral firm can invest
in N dedicated resources and one totally flexible
resource. Investment costs are linear and there are no
fixed costs. Gupta et al. (1992), Li and Tirupati (1994,
1995, 1997), and Van Mieghem (1998, 2004b) all inves-
tigate variations on this theme. The paper of most
direct relevance is Van Mieghem (1998). In that model,
the firm sells two products that differ in contribu-
tion margins. This difference in contribution margins
makes flexibility valuable even if demands for both
products are perfectly positively correlated, a result
that contradicted the prevailing intuition. Our work
relaxes two implicit assumptions (reliable investments
and risk neutrality) of these models. There is a bur-
geoning literature on non-risk-neutral decision mak-
ers in the single-product newsvendor context, e.g.,
Eeckhoudt et al. (1995), Agrawal and Seshadri (2000),
Schweitzer and Cachon (2000), Caldentey and Haugh
(2004), and Chen et al. (2003). As far as we are aware,
the only mix-flexibility paper (other than this one) to
relax the risk-neutrality assumption is Van Mieghem
(2004b). That paper and our paper can be seen as
complementary, in that the research questions being
addressed differ, as do the treatments of non-risk-
neutral decision makers. Van Mieghem (2004b) inves-
tigates how risk aversion influences the flexibility
investment levels in perfectly reliable newsvendor
networks by using concave-increasing utility func-
tions (to investigate the directional influence of risk
aversion) and a mean-variance approach (to investi-
gate the magnitude of the influence). In contrast, we
investigate flexibility and dual sourcing in unreliable
newsvendor networks and, in doing so, allow for non-
risk-neutral firms by considering both loss aversion
(Kahneman and Tversky 1979) and the Conditional
Value-at-Risk (CVaR) measure (Rockafellar and Urya-
sev 2000, 2002).
Unreliable, single-product, single-resource prob-

lems have been widely studied in the yield and
disruption literatures. In contrast, unreliable supply
chains (multiple resources or multiple products, or
both) have received less attention. Dual-sourcing

strategies have been investigated in the context of
random yield (Gerchak and Parlar 1990, Parlar and
Wang 1993, Anupindi and Akella 1993, Agrawal and
Nahmias 1997, Swaminathan and Shanthikumar 1999,
Dada et al. 2003, Tomlin 2004b), random disruptions
(Parlar and Perry 1996, Gürler and Parlar 1997, Tom-
lin 2004a), and credit risk (Babich et al. 2004), but all
these papers assume a single product, so mix flexibil-
ity is not relevant. We note that Tomlin (2004a) inves-
tigates the value of volume flexibility in unreliable
supply chains.
The rest of the paper is organized as follows.

Section 2 introduces the general supply chain model.
In §3 we consider the SD and SF networks. In §4 we
consider the DF and DD networks, and compare them
to the single-source networks. Conclusions and direc-
tions for future research are presented in §5. Proofs of
all results can be found in Appendix A.

2. The Model
We present a general model and identify each of the
supply networks (SD, SF, DD, and DF) as instances of
the general model. There are N products n= 1� � � � �N .
The marginal contribution margin for product n is pn.
We use the notational convention that p1 ≥ p2 ≥ · · · ≥
pN . Let p = �p1� � � � � pN �. All vectors are assumed to
be column vectors, and ′ denotes the transpose oper-
ator. The firm can invest in nonnegative levels (Kj )
of J different resources labeled j = 1� � � � � J . Let T be
the N × J technology matrix with tnj = 1� indicat-
ing that resource j can produce product n. Demand
X̃ = �X̃1� � � � � X̃N � is uncertain, with a joint density
fX�x1� � � � � xN � at the time of the investment decision.
The demand-correlation matrix is denoted �X with
element �mn being the correlation coefficient for prod-
ucts m and n. The marginal density for X̃n is fXn�xn�
and the cumulative distribution function is FXn�xn�.
Realizations of demand are denoted x= �x1� � � � � xN �.
Resource investments are unreliable and the real-

ized level K̃r
j for resource j is stochastically propor-

tional to the invested level Kj , i.e., K̃r
j = ỸjKj . In

particular, we assume a Bernoulli yield model in
which Ỹj = 1 with probability �j and Ỹj = 0 with prob-
ability 1−�j . We refer to �j as the reliability of resource
j . There is often a Bernoulli nature to the supply pro-
cess (e.g., Anupindi and Akella 1993, Parlar et al. 1995,
Swaminathan and Shanthikumar 1999, Dada et al.
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2003, Tomlin 2004b). In the case of inventory, Bernoulli
supply processes arise due to batch failures, accep-
tance sampling, supply-chain disruptions, or sup-
plier delays (if the delivery occurs too late to serve
demand). Unless otherwise stated, we assume that the
Ỹj are independent. Let Ỹ = �Ỹ1� � � � � ỸJ � and let a real-
ization be denoted by y = �y1� � � � � yJ �.
Investment costs for an unreliable resource can

depend on both the investment (or ordered) level and
the realized (or delivered) level. For each resource j ,
we assume that the firm pays �jcj per unit ordered
and an additional �1 − �j�cj per unit delivered. We
refer to cj as the marginal total cost and �j as the
marginal committed cost. Equivalently, we can think
of the firm paying cj per unit ordered but receiving a
rebate of �1−�j�cj for each unit not delivered; in that
context �1−�j� is the failure rebate. Let c= �c1� � � � � cJ �,
�= ��1� � � � ��J �, cj �yj �= cj ��j + �1− �j�yj�, and c�y�=
�c1�y1�� � � � � cJ �yJ ��.
The firm’s investment problem can be formulated

as a two-stage stochastic program. In the second
stage, after demands and investments have been real-
ized, the firm allocates production to maximize the
contribution.

r�K�x�y�= max
sn� qnj≥0

p′s (1)

s.t. sn ≤ xn� n= 1� � � � �N (2)

sn ≤
J∑
j=1
tnjqnj� n= 1� � � � �N (3)

N∑
n=1

qnj ≤ yjKj� j = 1� � � � � J � (4)

where qnj denotes the production of product n by
resource j , s = �s1� � � � � sN � denotes the sales of prod-
ucts 1� � � � �N , constraint (2) ensures that sales do not
exceed realized demand, constraint (3) ensures that
sales do not exceed production, and constraint (4)
ensures that resource usage does not exceed the real-
ized level.
Let w0 be the firm’s initial wealth and let W̃ �K� be

the random gain or loss (denoted by positive or nega-
tive numbers, respectively) achieved by investment K.
The firm’s realized profit on investment K is given by
w�K�=−c�y�′K+r�K�x�y�. The firm’s random termi-
nal wealth is then w0+W̃ �K�. In the first stage, before
demands and yields are realized, the firm chooses

a nonnegative investment vector K =�K1� � � � �KJ � to
maximize some objective function V �K�, where V �K�
depends on the firm’s terminal wealth. We consider
three different types of firms: a risk-neutral firm,
a loss-averse firm, and a firm concerned about down-
side risk, each represented by a distinct form of the
objective function.
The risk-neutral objective function is given by

VRN�K�= w0 + EX̃� Ỹ�W̃ �K��, so the risk-neutral invest-
ment problem is

VRN�K
∗�=w0+max

K≥0
EX̃� Ỹ�W̃ �K��� (5)

A loss-averse decision maker (Kahneman and Tversky
1979) attributes more significance to losses than to
gains. Schweitzer and Cachon (2000) study loss aver-
sion in a classic single-product newsvendor setting
by using a piecewise-linear model that is a spe-
cial case of Tversky and Kahneman’s (1992) two-part
power-function model. We assume the same piece-
wise linear model here; VLA�K� = w0 + EX̃� Ỹ�W̃

+�K�−
 W̃−�K�� where W̃+�K� = max!W̃ �K��0", W̃−�K� =
max!−W̃ �K��0" and  ≥ 1. Increasing loss aversion
is associated with an increasing  . We note that
VLA�K�= VRN�K� at  = 1. The loss-averse investment
problem is

VLA�K
∗�=w0+max

K≥0
EX̃� Ỹ�W̃

+�K�− W̃−�K��� (6)

For the terminal wealth distribution associated with
a resource-investment vector K, the CVaR, denoted
VCVaR# �K�, is the mean of the left #-tail of the wealth
distribution. The percentile # ∈ �0�1� is a param-
eter that reflects the firm’s taste for downside risk.
At # = 1, the firm is risk neutral, and the com-
plete wealth distribution is considered in the objec-
tive. For # < 1, the firm maximizes the mean of
the wealth distribution falling below a specified per-
centile level #. Increasing concern with downside risk
is associated with a decreasing percentile #. In recent
years, the CVaR measure has gained popularity as a
risk measure in the finance literature, e.g., Rockafellar
and Uryasev (2000, 2002), Acerbi (2002), Acerbi and
Tasche (2002), and Szegö (2002). Using Theorem 10 of
Rockafellar and Uryasev (2002),

VCVaR# �K�

=w0+max
v

{
v+ 1

#
EX̃�Ỹ�min!W̃ �K�−v�0"�

}
� (7)



Tomlin and Wang: On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks
Manufacturing & Service Operations Management 7(1), pp. 37–57, © 2005 INFORMS 41

i.e., for a given investment vector K, VCVaR# �K� can
be found by solving a maximization problem. We can
therefore write the CVaR investment problem as

VCVaR# �K
∗�

=w0+max
K≥0�v

{
v+ 1

#
EX̃�Ỹ�min!W̃ �K�−v�0"�

}
� (8)

VCVaR# �K� is jointly concave over K ≥ 0 and v;
see Rockafellar and Uryasev (2000, 2002). It is this
joint concavity property, in addition to the fact that
VCVaR# �K� is a coherent measure of risk as defined in
Artzner et al. (1999), that has given rise to its popu-
larity. The optimal investment is independent of the
initial wealth for all three objective functions, and we
therefore assume thatw0 = 0 without loss of generality.
In closing, we note that each of the four supply

networks (SD, SF, DD, and DF) can be obtained as
a special case of the general model presented above.
For example, if N = 2, then

SD & T =
[
1 0

0 1

]
( SF & T =

[
1

1

]
(

DD & T =
[
1 1 0 0

0 0 1 1

]
( DF & T =

[
1 0 1

0 1 1

]
�

3. Single-Source Networks:
The Flexibility Premium

In this section, we focus on the single-source networks
SD and SF. There are N resources in the SD network,
and we label these n= 1� � � � �N with resource n dedi-
cated to product n. There is a single (flexible) resource
in SF, and we label this N + 1. We focus on the coun-
terbalancing effects of demand pooling and resource
aggregation by assuming p1 = p2 = · · · = pN to elim-
inate the contribution-option benefit. By eliminating
this contribution-option benefit, we can model the SF
investment problem as a single-product problem with
demand X̃N+1 = X̃1+ X̃2+ · · · X̃N . We denote the den-
sity and cumulative distribution of total demand by
fXN+1�xN+1� and FXN+1 �xN+1�, respectively.
Let V SD�∗ and V SF�∗ denote the optimal objective

values for the SD and SF networks. SF is strictly
preferred if V SF�∗ > V SD�∗, and is weakly preferred
if V SF�∗ ≥ V SD�∗. Hereafter, the term preferred should
be understood to mean weakly preferred. Clearly the
firm’s preference will depend on the resource costs
and the reliabilities, so neither network will dominate

the other in the sense that it is preferred for all pos-
sible parameters. To gain insight into what drives a
firm’s network preference, we restrict attention in this
section to the special case where the following three
assumptions all hold.
1. The resource reliabilities are identical for all

resources, i.e., �1 = �2 = · · · = �N = �N+1 = �, but the
yield random variables are still independent across
resources.
2. The marginal committed costs are identical for

all resources, i.e., �1 = �2 = · · · = �N = �N+1 = �.
3. The marginal total costs are identical for the ded-

icated resources, i.e., c1 = c2 = · · · = cN = c.
We now introduce two definitions, the second of

which will be a key metric in much of the analysis.
Definition 1. The indifference cost cIN+1 is the value

of the flexible resource’s marginal total cost at which
the firm is indifferent between the SD and SF net-
works; that is, cIN+1 is the value of cN+1 such that
V SF�∗ = V SD�∗.
Definition 2. The flexibility premium + is the rela-

tive difference in the marginal total costs at which the
firm is indifferent between the SD and SF networks,
i.e., += �cIN+1− c�/c.
The flexibility premium + is a useful measure of the

value of flexibility; the firm prefers the SF network as
long as cN+1 ≤ �1++�c. Put another way, +> 0 implies
that the firm is willing to pay a higher price (rela-
tive to the dedicated resources) for flexibility, whereas
+< 0 implies that the firm requires a lower price for
flexibility to be preferred.
We note that although we assume that resource

reliabilities, marginal committed costs, and dedicated
marginal total costs are identical in this section, many
of the following equations ((9)–(24)) can be extended
to the nonidentical case in a straightforward manner.

3.1. Risk-Neutral Firm
This SF investment problem is an extension of the
classic single-product newsvendor model to allow for
Bernoulli investment failures and the specified invest-
ment costs. The objective function is

V SF
RN�KN+1� = −��+ �1−����cN+1KN+1

+ �p

[∫ KN+1

0
xN+1fXN+1�xN+1� dxN+1

+KN+1�1− FXN+1 �KN+1��
]
� (9)
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It is relatively straightforward to show that

K∗
N+1�RN = F −1

XN+1

[
1− ��+ �1−����cN+1

�p

]
(10)

and

V SF�∗
RN = �p

∫ K∗
N+1

0
xN+1fXN+1�xN+1� dxN+1� (11)

The SD investment problem can be modeled as N
independent single-product problems, so

K∗
n�RN = F −1

Xn

[
1− ��+ �1−����c

�p

]
�

n= 1� � � � �N (12)

and

V SD�∗
RN = �p

N∑
n=1

∫ K∗
n

0
xnfXn�xn� dxn� (13)

For the case of N = 2 (i.e., two products), the
risk-neutral flexibility premium +RN is plotted as a
function of both � and � in Figures 2 and 3 for inde-
pendent uniformly distributed U�0�1� demands.
We see that +RN can be increasing or decreasing in

both � and �, depending on the magnitude of p/c.
Observe that +RN is constant for �= 0 in both cases.
This observation is true in general, because the opti-
mal resource investment is independent of the relia-
bility (K∗

n�RN = F −1
Xn
�1− c/p�) if investment failures are

fully rebated, i.e., � = 0. Observe that the flexibility
premium is nonnegative for all ����� combinations in

Figure 2 Flexibility Premium for Risk-Neutral Objective with p/c= 2
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Figure 3 Flexibility Premium for Risk-Neutral Objective with p/c= 5
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both figures; that is, SF is always preferred if cN+1 ≤ c.
In fact, as the following proposition shows, this obser-
vation is true in general.

Proposition 1. For any demand random vector X̃
(i) the risk-neutral flexibility premium +RN is nonnegative
for all 0≤ � ≤ 1, (ii) 0≤ � ≤ �c/�p−�1−��c�⇒+RN = 0,
and (iii) +RN = 0 if �X = 1, i.e., pairwise perfect positive
correlation for all products.

This proposition tells us that the SF network is pre-
ferred to the SD network for all reliabilities and for
all demand distributions in the case of a risk-neutral
firm facing equal resource reliabilities and costs. This
result was not obvious a priori (at least to the authors),
because the demand-pooling benefit of SF might be
outweighed by the resource-aggregation disadvan-
tage. In fact, even when there is no demand-pooling
benefit (i.e., �X = 1), the firm is still indifferent between
SF and SD. Recall that the contribution-margin ben-
efit does not exist because p1 = p2 = · · · = pN . The
only explanation is that resource aggregation does
not exclusively penalize SF. Resource aggregation is
a disadvantage for SF from a downside perspective
because the probability of multiple resources failing in
SD is less than that of the single resource failing in SF,
but an advantage from an upside perspective because
the probability of the single resource succeeding in
SF is higher than the probability of multiple resources
succeeding in SD. For a risk-neutral firm, the upside
resource-disaggregation advantage, coupled with the
demand-pooling benefit of the SF network, dominates
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the downside resource-disaggregation disadvantage,
resulting in SF being preferred to SD. Allowing for
asymmetric contribution margins only increases the
advantage of the SF network.
Risk neutrality implies a utility function that has a

constant marginal return to wealth. Resource aggrega-
tion influences the distribution of the terminal wealth,
so it is natural to ask whether alternate wealth pref-
erences would change the result that SF is preferred
to SD. We now address this question by considering
the loss-averse and CVaR objective functions.

3.2. Loss-Averse Firm
We assume that N = 2 in this section, but the results
for the SF network extend in an obvious fashion to
the case where there are more than two products.
Recall that, using our convention, the total demand
is labeled X̃3 and the flexible resource is labeled K3
when N = 2 (because N + 1= 3).
The SF investment problem is an extension of

the loss-averse single-product newsvendor model to
allow for Bernoulli investment failures and the speci-
fied investment costs. The objective function is

V SF
LA�K3� = EX3�Y3 �W̃3�K3��

+ � − 1�EX3�Y3 �W̃3�K3� � W̃3�K3� < 0�� (14)

where W̃3�K3� is the random profit realized by an
investment of K3. Therefore,

V SF
LA�K3�=−��+ �1−����c3K3

+ �p

(∫ K3

0
x3fX3�x3� dx3+K3�1− FX3 �K3��

)
+ � −1�

(
−�1− ���c3K3+ �

(
−c3K3FX3 �c3K3/p�

+ p
∫ c3K3/p

0
x3fX3�x3� dx3

))
� (15)

and the first and second derivatives are

dV SF
LA�K3�

dK3
= ��p�1− FX3 �K3��− � − 1�c3FX3 �c3K3/p��

− �� + �1−� ���c3 (16)

d2V SF
LA�K3�

dK23
= �

(
−pfX3�K3�− � − 1�c3
· fX3

(
c3K3
p

)(
c3
p

))
≤ 0� (17)

The optimal flexible investment K∗
3 is therefore given

by

FX3 �K
SF�∗
3�LA�+ � − 1�

(
c3
p

)
FX3

[
c3K

SF�∗
3�LA

p

]
= 1− �� + �1−� ���c3

�p
� (18)

and the resulting objective value is

V SF�∗
LA = �p

(∫ KSF�∗3�LA

0
x3fX3�x3� dx3

+ � − 1�
∫ �c3/p�K

SF�∗
3�LA

0
x3fX3�x3� dx3

)
� (19)

We note that Equations (14) to (19) extend directly to
the case where N > 2, with N +1 replacing 3. We also
note that Equation (18) collapses to the risk-neutral
optimal investment (10) when  = 1.
Closed-form solutions for KSF�∗3�LA and V SF�∗

LA will not
exist in general. We have, however, been able to
obtain closed-form solutions for the case of X̃1 and X̃2
having independent uniform distributions.

Proposition 2. Let X̃1 and X̃2 have independent
U�0�1� distributions. If

�p/2���− � − 1��c3/p�3�≤ �� + �1−� ���c3�

then

KSF�∗3�LA =
√
2�1− �� + �1−� ���c3/��3p�

1+ � − 1��c3/p�3
�

Otherwise,

KSF�∗3�LA =
[
−1+

(
1− 1

2

(
� − 1�

(
c3
p

)3
− 1

)

·
(
−2+ �� + �1−� ���c3

�p

))1/2]

·
[
1
2

(
� − 1�

(
c3
p

)3
− 1

)]−1
�

We now turn to the SD network. Let wn�xn�yn�Kn�

be the realized profit generated by product n from
an investment of Kn in dedicated resource n, and let
W̃n�Kn� be the random profit. Then

wn�xn�yn�Kn� = −��+�1−��yn�cKn

+pmin!xn�ynKn"� (20)
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The random total profit for the SD network is
W̃ SD�K1�K2� = W̃1�K1� + W̃2�K2�. The probability of a
loss depends on the realization of X̃1, X̃2, Ỹ1, and Ỹ2.
Because losses and gains are weighted differently, the
loss-averse SD network cannot be decomposed into
two single-product loss-averse problems as was pos-
sible in the risk-neutral case. The loss-averse objective
function is

V SD
LA �K1�K2� = EX̃� Ỹ�W̃

SD�K1�K2��+ � − 1�
·EX̃� Ỹ�W̃

SD�K1�K2� � W̃ SD�K1�K2� < 0��

(21)

where

EX̃�Ỹ�W̃
SD�K1�K2��=

2∑
n=1

[−��+�1−����cKn+�p�LXn�Kn�

+Kn�1−FXn�Kn���
]
� (22)

LXn�z�=
∫ z

0
xnfXn�xn�dxn (23)

EX̃�Ỹ�W̃
SD�K1�K2� �W̃ SD�K1�K2�<0�

= �1−��2G00�K1�K2�+��1−��G10�K1�K2�
+�1−���G01�K1�K2�+�2G11�K1�K2�� (24)

We note that the Gy1� y2
�K1�K2� expressions can be

found in Appendix D and that yn denotes the real-
ization (success or failure) of resource n in the
Gy1�y2

�K1�K2� expressions. Closed-form solutions
for KSD�∗n�LA and V

SD�∗
LA do not exist in general.

Proposition 3. Let X̃1 and X̃2 have independent
U�0�1� distributions. Then

KSD�∗1�LA =KSD�∗2�LA =−2A+
√
22A−2B

where

p<2c ⇒



2A =
[
� −1�

((
4
c

p
−4

(
c

p

)2
−1

)
�2

− 1
2
��1−��2�1+��2

(
c

p

)2)
−�

]

·
[
� −1��2

(
3
2
+4

(
c

p

)3
−5 c

p

)]−1

2B =
[
�− c

p
��+�1−���+� −1��1−��2��

]

·
[
� −1��2

(
3
2
+4

(
c

p

)3
−5 c

p

)]−1

Figure 4 Flexibility Premium for Loss-Averse Objective with p/c = 2
and �= 0�2
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and

p≥2c ⇒



2A = 1
2�

((
p

c

)3 1
 −1+

p

c
�1−���1+��2

)

2B = 1
2� −1��

(
p

c

)2
·
(
�

�
+�1−��+� −1��1−��2�

�
− p

c

)
�

Figures 4 and 5 illustrate the dependence of the
loss-averse flexibility premium +LA on the reliability �
and the loss-aversion coefficient  .
Observe that +LA can be negative (especially as the

reliability decreases or loss aversion increases). This
means that the SD network can be strictly preferred
to the SF network even when the flexible resource
costs the same or less than the dedicated resources; a
result that cannot occur in the risk-neutral case (see
Proposition 1). In the case of loss aversion, the down-
side resource-aggregation disadvantage of the flexi-
ble strategy is amplified by the higher weight placed
on losses, with the result that SD can outperform SF.
Comparing Figures 4 and 5, we see that moving from
� = 0�2 to � = 0�8 makes SD preferable over a larger
set of ��� � pairings, because the consequences of
failure are larger when the marginal committed cost
increases. We note that +LA is not necessarily decreas-
ing everywhere in  ; we observed +LA to be increas-
ing and then decreasing for instances with higher p/c
values.
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Figure 5 Flexibility Premium for Loss-Averse Objective with p/c = 2
and �= 0�8
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The insight that the flexible resource may have to
be cheaper than the dedicated resources for the firm
to prefer SF to SD does not hinge on the choice of
a loss-averse objective function. Qualitatively similar
results can be shown to hold under the CVaR objec-
tive; that is the flexibility premium can be negative.
Specific propositions and results for the CVaR objec-
tive can be found in Appendix B.

3.3. Flexibility Premium in
Perfectly Reliable Supply Chains

The reader may have noticed that the loss-averse flex-
ibility premium +LA is nonnegative everywhere for
� = 1 in Figures 4 and 5. A similar phenomenon is
also observed for the CVaR objective. Such numeri-
cal results suggest that the flexibility premium + is
always nonnegative for �= 1. This suggestion is con-
firmed by the following proposition. Define U1 as
the set of utility functions that are nondecreasing in
wealth, i.e., more is (weakly) better.

Proposition 4. Let the firm have an initial wealth of
w0. Let X̃ have any joint distribution. Let �1 = �2 = · · · =
�N = �N+1 = 1. Then (i) + ≥ 0 for all utility functions
u1 ∈U1, (ii) in particular +≥ 0 for the loss-averse objective
function and the CVaR objective function.

Proposition 4 is a quite general result because it
makes no assumptions on the demand distribution
and only very mild assumptions on the utility function

(that it be nondecreasing in wealth). Clearly, U1 con-
tains all concave increasing utility functions; the com-
mon model for risk aversion. In fact U1 contains all
(locally and globally) risk-averse or risk-seeking utility
functions as long as u′�w�≥ 0 everywhere.
It is commonly accepted intuition that a flexible

strategy is preferable to a dedicated strategy if the
investment costs are equal. This intuition manifests
itself in the literature in the assumption that the unit
cost for the flexible resource is higher than for dedi-
cated resources. Using Propositions 1 and 4, we can
establish when the common intuition is in fact valid.
Remark 1. For the case of identical resources (mar-

ginal total costs, marginal committed costs, and reli-
abilities), the SF network is preferred to the SD net-
work if either the resource investments are perfectly
reliable (i.e., �= 1) or the firm is risk neutral. If neither
condition holds, then the SD network can be strictly
preferred to the SF network.
Thus, the common intuition is valid if either the risk

neutrality or the perfect reliability assumption holds,
but can be incorrect if neither condition holds.

4. Dual-Source Networks: DD and DF
We now consider the DD and DF networks. We
choose to call these dual-source networks because the
firm can invest in dual resources for any given prod-
uct. We do not, however, force the firm to invest in
all available resources, so a single-source strategy for
one or more products may be optimal.

4.1. Two-Product DF Network
We label the resources as follows: resource 1 is ded-
icated to product 1, resource 2 is dedicated to prod-
uct 2, and resource 3 is totally flexible. This DF
network is an extension of Van Mieghem (1998), here-
after referred to as VM98, in that we allow for unre-
liable resource investments (with costs that are lin-
ear in both the target investment and the realized
investment) and non-risk-neutral objective functions.
The model collapses to that of VM98 if all reliabilities
equal one and the objective value is VRN�K�. VM98
restricts attention to c3 > max!c1� c2", because other-
wise the flexible resource clearly dominates at least
one of the dedicated resources. We consider all c3 ≥ 0,
because in our more general model investing in the
dedicated resources may be optimal even if c3 ≤
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min!c1� c2". There are eight possible structures to the
optimal solution (corresponding to different combina-
tions of positive resource investments), and each of
the eight structures can be optimal depending on the
model parameters.
Let us consider the risk-neutral problem. For any

feasible investment vector K =�K1�K2�K3�, the partial
derivatives with respect to Kj are given by

6V DF
RN �K�
6K1

= −c1��1+�1−�1��1�
+�1

(
p1
(
�1−�3�P�81�+�3P�82�

)
+�3p2

(
�1−�2�P�83�+�2P�84�

))
6V DF

RN �K�
6K2

= −c2��2+�1−�2��2�
+�2p2

(
�1−�3�P�85�

+�3
(
�1−�1��P�86�+P�87��

+�1
(
P�84�+P�88�+P�89�

)))
6V DF

RN �K�
6K3

= −c3��3+�1−�3��3�
+�3p1

(
�1−�1�P�810�+�1P�82�

)
+�3p2

(
�1−�1��1−�2�P�811�+�1�1−�2�

·�P�83�+P�812��+�1−�1��2P�86�

+�1�2
(
P�84�+P�89�

))
� (25)

where each of the 8k, k = 1� � � � �12, is a demand-
space region, and the union of the 8k cover the
demand space. We note that because of the Bernoulli
failures, the problem does not lend itself to a strict
partitioning (disjoint 8k) of the demand space as in
Figure 1 of VM98. Expressions for the P�8k� can be
found in Appendix C. V DF

RN �K� can be shown to be
jointly concave in �K1�K2�K3�. Let V

DF�∗
RN denote the

optimal objective value and KDF∗j�RN the optimal invest-
ment level for resource j = 1�2�3. An interior solution
�KDF�∗1�RN > 0�K

DF�∗
2�RN > 0�K

DF�∗
3�RN > 0� is optimal if and only

if the three derivatives in (25) all equal zero for some
�K1 > 0�K2 > 0�K3 > 0�. If such a solution exists, it
is unique. If such a solution does not exist, then one
or more of the K∗

j�RN must equal zero and so at least
one of the products is single sourced. Closed-form
solutions for �K∗

1�RN�K
∗
2�RN�K

∗
3�RN� do not exist for the

VM98 model and so will not exist for our model. We
can, however, characterize the directional influence of

prices, marginal total costs, marginal committed-costs,
reliabilities, and failure rebates on V DF�∗

RN and KDF�∗j�RN.
We first extend Propositions 3 and 4 of VM98 to

characterize the directional influence of marginal total
costs and prices on V DF�∗

RN and KDF�∗j�RN when resource in-
vestments are unreliable.

Proposition 5. For a risk-neutral firm, (i) V DF�∗
RN is a

nonincreasing convex function of the marginal total-cost
vector c and the marginal committed-cost vector �, and a
nondecreasing convex function of the contribution-margin
vector p( (ii) if the marginal demand density fXn�x�, n=
1�2, is either log-concave or log-convex, then the direc-
tional sensitivity of the optimal investment vector KDF�∗

RN

with respect to p, c� and � is given by the following matri-
ces (e.g., 6KDF�∗1�RN/6c3 ≥ 0)

:pK
DF�∗
RN =

[≥0 ≥0 ≥0
≥0 ≥0 ≥0

]
�

:cK
DF�∗
RN =


≤0 ≤0 ≥0
≤0 ≤0 ≥0
≥0 ≥0 ≤0

 �

:�K
DF�∗
RN =


≤0 ≤0 ≥0
≤0 ≤0 ≥0
≥0 ≥0 ≤0

 �
Actual expressions for the sensitivities are available

on request, but are very involved and not particu-
larly insightful. Proposition 5 proves that the perfect-
reliability results of VM98 for the c and p vectors
still hold for an unreliable network. As discussed in
VM98, the presence of the flexible resource means that
the optimal investment level for the resource dedi-
cated to product n is influenced by the resource ded-
icated to product 3 − n, n = 1�2. We also see that
the marginal total costs and committed costs have the
same directional influence. VM98 does not address
marginal committed costs because such costs are irrel-
evant in a perfectly reliable network. We note that the
assumption of log-concavity or log-convexity for the
marginal demand densities is a mild one that is met
by the Uniform, Normal, Weibull, Gamma, Pareto,
and Logistic distributions, as well as by many others.
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Proposition 6. For a risk-neutral firm, (i) V DF�∗
RN is a

nondecreasing convex function of the reliability vector �;
(ii) if the marginal demand densities fXn�x� are uniform,
then the directional sensitivity of the optimal investment
vector KDF�∗

RN with respect to � is given by the following
matrix:

:�K
DF�∗
RN =


≥0 ≥0 ≤0
≥0 ≥0 ≤0
≤0 ≤0 ≥0

 �
As one would expect, the firm benefits from

increasing resource reliabilities. We again see a cross-
dependence for the dedicated resources because of the
presence of the flexible resource. An increase in the
reliability of a dedicated resource j = 1�2 increases
the investment in that resource j . This decreases the
investment in the flexible resource, and as a conse-
quence increases the investment in the other dedi-
cated resource 3− j .

4.2. Two-Product DD Network
We now consider the DD network in which there
are four dedicated resources (j = 1�2 dedicated to
product 1 and j = 3�4 dedicated to product 2). There
are 16 possible structures to the optimal solution
(corresponding to different combinations of positive
resource investments); each of the structures can be
optimal depending on the model parameters.
This model is an extension of the single-period ver-

sion of Model 1 in Anupindi and Akella (1993), here-
after referred to as AA93. Setting X̃2 = 0 (i.e., single
product), �1 = �2 = 0� and V �K� = VRN�K� recovers
the AA93 model. For any feasible investment vec-
tor K =�K1�K2�K3�K4�, the partial derivatives (for the
risk-neutral objective function) with respect to Kj are
given by

6V DD
RN �K�
6Kj

= −cj ��j + �1−�j��j�

+ �j��3−j �1− FX1 �K1+K2��

+ �1−�3−j �FX1 �Kj��� j = 1�2 (26)
6V DD

RN �K�
6Kj

= −cj ��j + �1−�j��j�

+ �j��7−j �1− FX2 �K3+K4��

+ �1−�7−j �FX2 �Kj��� j = 3�4� (27)

V DD
RN �K� can be shown to be jointly concave in

�K1�K2�K3�K4�. Let V
DD�∗
RN denote the optimal objec-

tive value and KDD∗j�RN the optimal investment level for
resource j = 1� � � � �4. AA93 proved that there was no
closed-form solution for the optimal investment levels
in their model, and so there will not be a closed-form
solution to our more general model. We can, how-
ever, still say something about the directional influ-
ence of the costs, reliabilities, and prices on these opti-
mal values.

Proposition 7. For a risk-neutral firm, (i) V DD�∗
RN is a

nonincreasing convex function of the marginal total-cost
vector c and the marginal committed-cost vector �, and a
nondecreasing convex function of the contribution-margin
vector p and the reliability vector �; (ii) the directional
sensitivity of the optimal investment vector KDD�∗

RN with
respect to p, c, �, and � is given by the following matrices

:pK
DD�∗
RN =

[≥0 ≥0 =0 =0
≥0 ≥0 =0 =0

]
�

:cK
DD�∗
RN =


≤0 ≥0 =0 =0
≥0 ≤0 =0 =0
=0 =0 ≤0 ≥0
=0 =0 ≥0 ≤0

 �

:�K
DD�∗
RN =


≤0 ≥0 =0 =0
≥0 ≤0 =0 =0
=0 =0 ≤0 ≥0
=0 =0 ≥0 ≤0

 �

:�K
DF�∗
RN =


≥0 ≤0 =0 =0
≤0 ≥0 =0 =0
=0 =0 ≥0 ≤0
=0 =0 ≤0 ≥0

 �

For the DF network, the investment level for dedi-
cated resource for product n= 1�2 was influenced by
the costs and reliabilities of the dedicated resource for
product 3 − n, because of the coupling effect of the
flexible resource. This proposition tells us that in the
DD network, investment levels for a resource dedi-
cated to product n= 1�2 are influenced by the other
dedicated resource for product n, but not by the ded-
icated resources for product 3−n.
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4.3. Numerical Studies
Sections 4.1 and 4.2 established the directional influ-
ence of costs, reliabilities, and prices on the optimal
profits and absolute investment levels within a given
network structure, but they did not speak to either the
influence of model parameters on the relative invest-
ment levels within a network structure or the relative
attractiveness of the different network structures.
We address such questions through two numerical

studies. For the case of discrete demand distributions
(i.e., when probabilities are characterized by scenarios
rather than densities), the firm’s investment problem
can be formulated as a scenario-based stochastic lin-
ear program. Formulations for the general model (for
each of the three objective functions) are presented
in Appendix E. We used this approach in the two
numerical studies.
The first study was designed to address two types

of questions. First, for a given network structure, we
want to understand how the investment mix (i.e., per-
centage invested in each resource) is influenced by
demand correlation, contribution-margin difference,
reliability, and investment criterion. These were cho-
sen because they are key drivers of the attractiveness
of flexibility and dual sourcing. Second, we want to
understand the relative value of the various network
structures. For example, consider a firm that currently
operates an SD network. How much benefit does it
get by moving to a dual-sourcing network? Which
dual-sourcing network is preferred, and under what
circumstances? We fixed the number of products at
N = 2 in this study. The second study was designed
to investigate the relative performance of the four net-
works as the number of products increases.
We now describe the design and discuss the results

for the first study. The demand distribution for each
product was characterized by 200 demand scenarios.
The demand scenarios were drawn randomly from
a bivariate normal distribution. Because the demand
variance was not a focus of this study, we fixed the
demand mean and standard deviation to be 100 and
30� respectively, for both products. We varied the cor-
relation coefficient (�) from −1 to 1 in increments of
1/3, giving us a total of seven demand distributions
that varied in their correlation coefficient. The actual
correlations were −1�00, −0�69, −0�38, −0�04, 0�31,
0�66, and 1�00. The contribution margin for product 2

was fixed at p2 = 10. The relative contribution mar-
gin (p1/p2) was varied from 1�0 to 1�2 in increments
of 0�05, giving us a total of five contribution-margin
ratios. In §§4.1 and 4.2, we analytically characterized
the influence of a change in the reliability of a sin-
gle resource, so we chose to investigate the influence
of changes in the overall network reliability in the
numerical studies. To that end, we assume that �j = �

for all resources (resource failures are still indepen-
dent) and vary � from 0�2 to 1�0 in increments of 0�1,
giving us a total of nine supply-chain reliabilities. �=
0�1 was not used because it can be shown that all
resources will have zero investment at this reliability
level. We chose nine different objective functions: risk
neutral, loss aversion ( = 2�3�4�5), and CVaR (# =
0�95�0�9�0�85�0�8). All other model parameters were
held constant across problem instances because they
were not the focus of the study. The marginal com-
mitted cost was fixed at �= 0�2 for all resources. The
marginal total costs were fixed at cj = 5 for all dedi-
cated resources and at cj = 6 for all flexible resources.
A full factorial set of tests was run for each network,
so a total of 7×5×9×9= 2�835 instances was solved
for each of the four networks. The optimal solution
and objective value for each problem instance was
stored in a database that is available from the authors
on request.
The investment-mix question is particularly rele-

vant for the DF network. For the risk-neutral objec-
tive, Tables 1 to 3 present the percentage invested in
the flexible resource,

%KDF�∗3�RN = KDF�∗3�RN

KDF�∗1�RN+KDF�∗2�RN+KDF�∗3�RN

�

where the numbers presented are medians for %KDF�∗3�RN

taken across the study instances. For example, there

Table 1 Influence of Correlation on Percent
Investment in the Flexible Resource
in the DF Network

� %KDF�∗
3�RN

−1�00 38
−0�69 38
−0�38 35
−0�04 33
0�31 31
0�66 30
1�00 29
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Table 2 Influence of Relative Contribution
Margin on Percent Investment in the
Flexible Resource in the DF Network

p1/p2 %KDF�∗
3�RN

1.00 30
1.05 32
1.10 33
1.15 34
1.20 36

were 315 risk-neutral instances for the DF network,
so there were a total of 45 instances for each of the
seven correlations. As can be seen, the median per-
centage invested in the flexible resource increased in
the relative contribution margin and decreased in the
demand correlation. Even for perfectly positively cor-
related demands, the median investment in the flex-
ible resource was 29%. This number is driven by
two factors. First, as shown by VM98, an asymmet-
ric contribution margin can make the flexible resource
attractive even if � = 1. Second, the flexible resource
offers a diversification benefit in unreliable networks.
For those instances with perfectly positively corre-
lated demand and identical contribution margins (i.e.,
no flexibility benefit), the average flexible investment
was 0% when � = 1 (i.e., perfectly reliable), but was
18% when � = 0�8. This demonstrates the importance
of the diversification benefit that the flexible resource
provides in the DF network when investments are
unreliable. Reliability itself has a somewhat complex
influence on %KDF�∗3�RN. For a given supply-chain reli-
ability, the expected marginal investment cost cj ��+
�1− ���� is 20% higher for the flexible resource than

Table 3 Influence of Reliability on Percent
Investment in the Flexible Resource
in the DF Network

	 %KDF�∗
3�RN

0.2 22
0.3 38
0.4 38
0.5 37
0.6 35
0.7 32
0.8 27
0.9 23
1.0 17

Table 4 Influence of Correlation on Percent of Instances in Which DF
Is Better, Worse, or Equal to DD

� V DF�∗
RN > V DD�∗

RN V DF�∗
RN < V DD�∗

RN V DF�∗
RN = V DD�∗

RN

−1�00 82�22 17�78 0�00
−0�69 77�78 22�22 0�00
−0�38 71�11 28�89 0�00
−0�04 64�44 35�56 0�00
0�31 44�44 55�56 0�00
0�66 17�78 82�22 0�00
1�00 0�00 88�89 11�11

for a dedicated resource (because c1 = c2 = 5, c3 = 6).
At low reliabilities, this higher cost outweighs any
flexibility benefits provided by the flexible resource
because the benefits only arise in the unlikely event
that the resource investment succeeds. As reliabil-
ity increases, there is initially a dramatic increase in
%KDF�∗3�RN because the flexibility and diversification ben-
efits of the flexible resource become significant, but
as the network reliability continues to improve there
is a significant decrease in %KDF�∗3�RN as the diversifica-
tion benefit becomes less important (and nonexistent
at �= 1). While the numbers in Tables 1 to 3 are pre-
sented for the risk-neutral objective, the same obser-
vations for the influence of correlation, relative mar-
gin, and reliabilities held for the loss-averse and CVaR
objective functions.
We compared the optimal objective value across the

networks for each problem instance. Given the study
design, the DF network can never underperform the
SD or SF networks, but can underperform the DD net-
work. The DF network outperformed the SD network
(i.e., V DF�∗

RN > V SD�∗
RN ) in 93.65% of the 315 risk-neutral

instances and the performance was equivalent in the
other 6.35% of the 315 instances. The median expected-
profit improvement was 14.63% over the 93.65% of
cases for which V DF�∗

RN > V SD�∗
RN , indicating that a firm

can gain significant advantage by moving from an SD

Table 5 Influence of Relative Margin on Percent of Instances in Which
DF Is Better, Worse, or Equal to DD

p1/p2 V DF�∗
RN > V DD�∗

RN V DF�∗
RN < V DD�∗

RN V DF�∗
RN = V DD�∗

RN

1.00 38�10 60�32 1�59
1.05 44�44 53�97 1�59
1.10 50�79 47�62 1�59
1.15 57�14 41�27 1�59
1.20 65�08 33�33 1�59
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Table 6 Influence of Network Reliability on Percent of Instances in
Which DF Is Better, Worse, or Equal to DD

	 V DF�∗
RN > V DD�∗

RN V DF�∗
RN < V DD�∗

RN V DF�∗
RN = V DD�∗

RN

0.2 0�00 100�00 0�00
0.3 8�57 91�43 0�00
0.4 42�86 57�14 0�00
0.5 57�14 42�86 0�00
0.6 62�86 37�14 0�00
0.7 68�57 31�43 0�00
0.8 65�71 34�29 0�00
0.9 68�57 31�43 0�00
1.0 85�71 0�00 14�29

network to a DF network. The DF network offers both
flexibility and diversification benefits, so the question
arises as to which type of benefit is really driving the
superior performance. We investigated this question
by creating a network with the same diversification
benefit but no flexibility benefit. This was done by
creating a special DD network in which the failures
of resources 2 and 3 were perfectly positively corre-
lated (i.e., if one failed, so did the other) and having
their marginal total costs be identical to the flexible
resource cost (i.e., c2 = c3 = 6). This network outper-
formed the SD network in 66.67% of the instances, and
in those instances the median expected profit improve-
ment was 3.48%. Comparing these results with those
for the DF network, we see that, whereas the diver-
sification benefit of the DF network is significant, the
flexibility benefit is more significant.
Although the DF network provides some diversi-

fication, the (independent failure) DD network pro-
vides more diversification but no flexibility. For the
risk-neutral objective, the DF network outperformed
the DD network (V DF�∗

RN > V DD�∗
RN ) in 51.11% of the

instances, underperformed (V DF�∗
RN < V DD�∗

RN ) in 47.30%
of the instances, and performed equally in 1.59% of
the instances. Such data might suggest that a firm

Table 7 Influence of Loss Aversion on Percent of Instances in Which
DF Is Better, Worse, or Equal to DD


 V DF�∗
LA > V DD�∗

LA V DF�∗
LA < V DD�∗

LA V DF�∗
LA = V DD�∗

LA

1 51�11 47�30 1�59
2 41�46 56�79 1�74
3 37�50 60�71 1�79
4 35�00 63�21 1�79
5 33�83 64�29 1�88

is somewhat indifferent between these two networks,
but this is not the case. As Tables 4 to 7 demon-
strate, the network preference is highly driven by the
demand correlation, the relative contribution margin,
the resource reliability, and the investment criterion.
The DF network is much more attractive at lower
demand correlations, higher relative margins, and
higher reliabilities, whereas the DD network is much
more attractive at higher demand correlations, lower
relative margins, and lower reliabilities. The attrac-
tiveness of the DF network increases as either the
demand correlation decreases or the relative contri-
bution margin increases because the demand-pooling
and contribution-margin benefits of flexibility are
higher in such circumstances. The DF network is less
attractive at low reliabilities because the extra level of
diversification provided by the DD network is very
beneficial if resources are very unreliable. The firm’s
investment criterion is also a key driver of network
preference. As the firm becomes more loss averse,
it prefers the DD network in a higher percentage of
instances.
In the second study, we investigated the influence

of the number of products on the relative perfor-
mance of the four networks. This was done by fix-
ing all other parameters and varying the number of
products from two to five. Demand for each prod-
uct was assumed to be independent (as the influence
of correlation was established above) and was char-
acterized by 200 demand scenarios randomly drawn
from a normal distribution with mean and stan-
dard deviation of 100 and 30, respectively. Product
contribution margins were assumed to be identical
(as the influence of contribution-margin differences
was established above) and equal to 10. Resource

Table 8 Influence of the Number of Products on the Relative Difference
in Profit Between the DF and DD Networks

	 N = 2 N = 3 N = 4 N = 5

0.3 −12�87 −9�03 −5�88 −3�68
0.4 −4�56 0�45 4�08 6�67
0.5 −1�43 3�90 7�46 10�12
0.6 −0�24 5�12 8�61 11�04
0.7 0�17 5�22 8�51 10�78
0.8 0�57 4�94 7�74 9�88
0.9 1�37 4�80 7�13 8�79
1.0 2�48 5�14 6�79 8�38
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Table 9 Drivers of a Firm’s Preference for a Flexible or Dedicated Strategy

Element Attribute Influence on preference Reason

Product portfolio Demand correlations Preference for DF increases as demands become
more negatively correlated.

Negative correlation increases the demand-pooling
benefit of the flexible resource in the DF
network.

Contribution margins Preference for DF increases as the spread in
contribution margins increases.

Wider margin range increases the
contribution-margin option benefit (VM98) of
the flexible resource in the DF network.

Number of products Preference for DF increases as the number of
products increases.

The demand-pooling benefit of the flexible resource
increases as the number of products increases.

Resources Reliabilities Preference for DF decreases as resource
investments become less reliable.

Higher probability of resource failures increases
the diversification benefits of the DD network.

Firm Risk tolerance Preference for DF decreases as firm becomes
more concerned about downside risk.

In an unreliable network, the extra diversification
provided by the DD network lowers the firm’s
downside risk.

costs were assumed to be the same as in the above
study. We chose a risk-neutral objective (as the influ-
ence of non-risk-neutral objectives was established
above) and solved the investment problem for each
of the four network structures for network reliabilities
�= 0�3� � � � �1�0 and number of products N = 2�3�4�5.
We then calculated the relative network performance
as � and N vary. The relative performance for the DF
and DD networks (100× �V DF�∗

RN − V DD�∗
RN �/V DD�∗

RN ) can
be found in Table 8. For any given value of �, the
relative performance of the DF network improves as
the number of products increases. The reason for this
is that the demand-pooling benefit of the flexibility
resource increases with the number of products.

5. Conclusions
In this paper, we bridged the mix-flexibility and
dual-sourcing literatures by studying four canonical
supply-chain design strategies. Comparing the SD
and SF networks, we identified the critical roles that
risk tolerance and resource reliabilities play in the rel-
ative attractiveness of the two networks. We refined
the prevailing intuition that an SF-type network is
preferable to an SD-type network if a flexible resource
is no more costly than a dedicated resource. In par-
ticular, we proved that the intuition is valid if either
the resource investments are perfectly reliable or the
firm is risk neutral, but the intuition can be wrong
if neither condition holds. All things being equal
(resource costs and reliabilities), a dedicated strategy
can actually be strictly better than a flexible strategy.
In fact, the dedicated strategy can be strictly better

even if dedicated resources are more expensive than
a flexible resource.
We provided analytical results for the directional

influence of prices, marginal costs (total and commit-
ted), and reliabilities on the optimal expected profit
and resource levels for both the DD and DF networks.
In contrast to the DD network, optimal dedicated-
resource levels in the DF network are dependent on
resources that are dedicated to other products, a result
that suggests that flexible supply chains may not lend
themselves to decentralized design as easily as do
product-dedicated supply chains.
A comprehensive numerical study was undertaken

to investigate how the attributes of three key supply-
chain elements—namely, product portfolio, resources,
and the firm—influence the desirability of a given
design strategy. As one would expect, the desirabil-
ity of a dual-sourcing network (DD versus SD or
DF versus SF) increases as supply-chain reliability
decreases. The story is more nuanced when comparing
single-sourcing networks (SD versus SF) or dual-
sourcing networks (DD versus DF). Table 9 summa-
rizes the key results for such comparisons. We note
that, whereas Table 9 is framed in terms of dual-
sourcing networks, a similar story holds for single-
sourcing networks.
We conclude by identifying two dimensions not

considered in this paper. First, a firm’s enthusiasm for
resource diversification might be dampened by scale
economies in resource investments or by coordination
costs in dealing with multiple suppliers for the
same product. Second, supply-chain design may be a
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decentralized rather than a centralized endeavor, and
this raises the question of how to coordinate resource-
investment decisions. We hope that future research
will further refine the insights provided in this paper
by addressing these and other considerations.
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Appendix A. Proofs
Proof of Proposition 1. (i) +≥ 0⇔ V SF�∗RN −V SD�∗RN ≥ 0 at

cN+1 = c. Using Equations (10), (11), (12), and (13), we then
have

+≥ 0 ⇔
∫ F −1XN+1 �;�

0
xN+1fXN+1 �xN+1� dxN+1

−
N∑
n=1

∫ K∗
n

0
xnfXn�xn� dxn ≥ 0� (A-1)

where ; = 1 − �� + �1 − ����c/�p. Now,
∫ F −1X �;�

0 xf �x�dx =
−;ES;�X�, where ES;�X� is the ;-expected shortfall for a
continuous random variable X as defined in Acerbi and
Tasche (2002, hereafter AT02). Note that ; ∈ �0�1�. By sub-
stituting this into (A-1), rearranging the terms, and using
the fact that X̃N+1 =

∑N
n=1 X̃n, we then have

+RN ≥ 0⇔ ;

( N∑
n=1

ES;�X̃n�−ES;

( N∑
n=1

X̃n

))
≥ 0�

Now ES;�X� is subadditive (see AT02), i.e.,

ES;

( N∑
n=1

X̃n

)
≤

N∑
n=1

ES;�X̃n�

and so +RN ≥ 0.
(ii) It is straightforward to show that the flexible-only

resource level and the dedicated-only resource levels will
be positive if and only if � > �c/�p− �1−��c�. Therefore,

� ≤ �c/�p− �1−��c� ⇒ V SF�∗RN −V SD�∗RN = 0�
(iii) �1n = 1 for n= 2� � � � �N . Therefore, for each for n=

2� � � � �N we have X̃n = a1nX̃1 + b1n for some constants a1n
and b1n with a1n > 0. Using the positive-homogeneity and
translation-invariance properties of the expected shortfall
measure, we have ES;�aX + b� = aES;�X� − b; see AT02,
Proposition 3.1(iii) and (iv). We then have

N∑
n=1

ES;�X̃n� = ES;�X̃1�+
N∑
n=2
�a1nES;�X̃1�− b1n�

=
(
1+

N∑
n=2

a1n

)
ES;�X̃1�−

N∑
n=2

b1n�

Furthermore,
∑N

n=1 X̃n = �1+∑N
n=2 a1n�X̃1+

∑N
n=2 b1n and so

ES;

( N∑
n=1

X̃n

)
=
(
1+

N∑
n=2

a1n

)
ES;�X̃1�−

N∑
n=2

b1n =
N∑
n=1

ES;�X̃n��

Therefore, +RN = 0. �

Proof of Proposition 2. If X̃1 and X̃2 are independent
and identically distributed (i.i.d.) U�0�1�, then X̃3 = X̃1+ X̃2
has a triangular distribution over �0�2� and so FX3 �x�= x2/2
for 0 ≤ x ≤ 1 and FX3 �x�= 2x− x2/2− 1 for 1< x ≤ 2. Proof
follows from application of Equation (18). �

Proof of Proposition 3. Both resources are identical,
so an optimal solution will have KSD�∗1�LA = KSD�∗2�LA. We there-
fore can restrict attention to investments of the form K1 =
K2 = K, and K∗ must be less than or equal to one because
the demand is U�0�1�. Using Equations (21)–(24) and the
Gy1�y2

�K1�K2� equations in Appendix D, one can derive the
following expressions for V SDLA �K�K�. If p > 2c, then

V SDLA �K�K�

=2
(
��p−c��+�1−�����K−�pK

2

2
−� −1�

(
�1−��2c�K

+ ��1−���c�1−��K�2
2p

+ 2�
2c3

3p3
K3

))
(A-2)

and if p≤ 2c, then
V SDLA �K�K�

=2
(
��p−c��+�1−�����K−�pK

2

2
−� −1�

(
�1−��2c�K

+��1−���c�1−��K�
2

2p
+�2

((
5c
6
− p

4
− 2c

3

3p3

)
K3

−
(
2c− p

2
− 2c

2

p

)
K2

)))
� (A-3)

V SDLA �K�K� is a concave (cubic) function in K (for both p/c
regions) and so the first-order condition is sufficient for
optimality. For both p/c regions the first-order condition
is quadratic with one single nonnegative root. This root
is the optimal investment level given in the proposition
statement. �

Proof of Proposition 4. (i) Let KSD�∗ = �K∗
1 � � � � �K

∗
N � be

the optimal SD investment for some u1 ∈ U1. Consider the
following feasible SF investment: KN+1 =

∑N
n=1K

∗
n . Let W̃

SD

and W̃ SF be the profit random variables for the SD and SF
network using these strategies, with distributions denoted
by FW SD �w� and FW SF �w�. For any demand realization x =
�x1� � � � � xN �, the SD and SF networks will have the follow-
ing terminal wealths:

wSD�KSD�∗�=w0+ p
N∑
n=1
min!xn�K

∗
n"− c

N∑
n=1

K∗
n (A-4)

wSF
( N∑
n=1

K∗
n

)
=w0+ pmin

{ N∑
n=1

xn�
N∑
n=1

K∗
n

}
− c

N∑
n=1

K∗
n� (A-5)
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so

wSF
( N∑
n=1

K∗
n

)
−wSD�KSD�∗�

=p
(
min

{ N∑
n=1

xn�
N∑
n=1

K∗
n

}
−

N∑
n=1
min!xn�K

∗
n"

)
≥0� (A-6)

Therefore, FW SF �w� ≤ FW SD �w�, so W̃ SF first-order stochasti-
cally dominates W̃ SD. Therefore,

E�uSD1 �KSD�∗��≤ E

[
uSF1

( N∑
n=1

K∗
n

)]
for all utility functions u1 ∈ U1 (see Equation (4) in Levy
1992) and so

E�uSD1 �KSD�∗��≤ E�uSF1 �K
∗
N+1���

Therefore +≥ 0.
(ii) The loss-averse objective function VLA�K� is identical

to an expected utility objective function where the utility
function is piecewise-linear increasing (with the breakpoint
at w0). Such a utility function is in the U1 set, so the loss-
averse result follows directly from Proposition (4). W̃ SF first-
order stochastically dominates W̃ SD, so W̃ SF second-order
stochastically dominates W̃ SD. Recalling that CVaR is the
average value of the profit falling below the #-percentile
level, we can use Theorem 3 in Levy (1992) to state that

V SDCVaR�K
∗
1 � � � � �K

∗
N �≤ V SFCVaR

( N∑
n=1

K∗
n

)
�

Therefore,

V SDCVaR�K
∗
1 � � � � �K

∗
N �≤ V SFCVaR�K

∗
N+1��

so +≥ 0 for the CVaR objective function. �

Proof of Proposition 5. Proof of this proposition fol-
lows the same structure as that of VM98 Propositions 3
and 4. V DFRN �K� is nonincreasing convex in c = �c1� c2� c3� on
the convex set �+

3 for each K ∈�+
3 . V

DF�∗
RN �c� is therefore non-

increasing convex in c as maximization preserves convex-
ity. A similar argument holds for �= ��1��2��3�. V DFRN �K� is
nondecreasing convex in p = �p1� p2� on the convex set p ≥
p2 ≥ 0 for each K ∈ �+

3 . V
DF�∗
RN �p� is therefore nondecreas-

ing convex in p as maximization preserves convexity. The
Hessian matrix for V DFRN �K� is

h11 h12 h13

h21 h22 h23

h31 h32 h33

 �

where

h11 = −�1
(
p1��3I4�K1�K2�K3�+�1−�3��I4�K1�K2�0�
+I6�K1�K2�0���+p2��2�3�I2�K1�K2�K3�
+I5�K1�K2�K3��+�1−�2��3�I2�K1�0�K3�
+I5�K1�0�K3�−I4�K1�K2�K3���
+�p1−p2��3I6�K1�K2�K3�

)
h12 = h21=−�1�2�3I2�K1�K2�K3�

h13 = h31=−�1�3
(
p1I4�K1�K2�K3�+p2��2I2�K1�K2�K3�
+�1−�2��I2�K1�0�K3�−I4�K1�K2�K3���
+�p1−p2�I6�K1�K2�K3�

)
h22=−�2p2

(
�1�3�I1�K1�K2�K3�+I2�K1�K2�K3�+I3�K1�K2�K3��
+�1−�1��3�I2�0�K2�K3�+I3�0�K2�K3��
+�1−�3��I1�K1�K2�0�+I3�K1�K2�0��

)
h23 = h32=−�2�3p2

(
�1�I1�K1�K2�K3�+I2�K1�K2�K3��
+�1−�1��I2�0�K2�K3��

)
h33 = −�3

(
p1��1I4�K1�K2�K3�+�1−�1��I4�0�K2�K3���
+p2��1�2�I1�K1�K2�K3�+I2�K1�K2�K3��
+�1�1−�2��I1�K1�0�K3�+I2�K1�0�K3�
−I4�K1�K2�K3��+�1−�1��2I2�0�K2�K3�
+�1−�1��1−�2��I2�0�0�K3�−I2�0�K2�K3���
+�p1−p2���1I6�K1�K2�K3�+�1−�1�I6�0�K2�K3��

)
where the line integrals Ik�K1�K2�K3� k= 1� � � � �6 are given
in Appendix C and are similar to the Ik expressions in the
proof of Proposition 1 in VM98. Because we have to general-
ize for the case of investment failures, we write the function
in terms of Ik�K1�K2�K3� rather than simply Ik.
Proof of the gradients of K∗

j with respect to c, �, and
p follows from use of the Implicit Function Theorem (IFT)
for each of the eight possible optimal solution structures.
Application of the IFT requires detailed algebra that is avail-
able from the authors on request. We note that the interior
solution structure �K∗

1 > 0�K
∗
2 > 0�K

∗
3 > 0� is by far the most

cumbersome, and the only one in which we needed the suf-
ficient condition of log-convexity or log-concavity for the
proof. �

Proof of Proposition 6. Proof of this proposition fol-
lows the same structure as that of Proposition 5. V DFRN �K� is
nondecreasing convex in � = ��1� �2� �3� on the convex set
0≤ �j ≤ 1, j = 1� � � � �3, for each K ∈�+

3 . V
DF�∗
RN �K� is therefore

nondecreasing convex in � as maximization preserves con-
vexity. Proof of the gradients of K∗

j with respect to � follows
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from use of the IFT for each of the eight possible optimal
solution structures. Application of the IFT requires detailed
algebra that is available from the authors on request. We note
that the interior solution structure �K∗

1 > 0�K
∗
2 > 0�K

∗
3 > 0�

is by far the most cumbersome and the only one in which
we used the sufficient condition of i.i.d. uniform demands
for the proof. �

Proof of Proposition 7. V DDRN �K� is nonincreasing con-
vex in c (and in �) on the convex set �+

3 for each K ∈ �+
3 .

V DD�∗RN �K� is therefore nonincreasing convex in c (and in �)
as maximization preserves convexity. V DDRN �K� is nondecreas-
ing convex in p (and in �) on the convex set p ≥ p2 ≥ 0
(0≤ �j ≤ 1, j = 1� � � � �3) for each K ∈ �+

3 . V
DF�∗
RN �K� is there-

fore nondecreasing convex in p (and in �) as maximiza-
tion preserves convexity. V DDRN �K� is separable in �K1�K2�
and �K3�K4�, i.e., the problem decomposes into two single-
product problems. The resources dedicated to product i are
thus independent of resources dedicated to product 3− i,
i = 1�2. Proof of the gradients of K∗

j follows from use of
the IFT for each of the four possible optimal solution struc-
tures for the single-product problem; the detailed algebra is
available from the authors on request. �

Appendix B. The Flexibility Premium for the
CVaR Measure

Chen et al. (2003) prove that K∗ = F −1
X �#�p−c�/�p−v�� is the

optimal investment for a perfectly reliable single-product
newsvendor problem under a CVaR# objective, where v is
the salvage value (assumed to be zero in our work). We
extend this result to allow for Bernoulli investment failures.
Recall that X̃N+1 = X̃1+ X̃2+· · · X̃N and cN+1 is the marginal
total cost for the flexible resource.

Proposition 8. For the SF network, the optimal investment
level for the CVaR# objective is

K∗
3�CVaR#=F −1

XN+1

[
#

�

(
1− c3

p

)
+ 1−�

�

(
cN+1
p

�1−��−1
)]
� (B-1)

Proof. Available from the authors on request. �

We note that at � = 1 (B-1) gives the perfect-reliability
investment of Chen et al. (2003) for the case of zero salvage
value, and it also gives the risk-neutral optimal investment
(10) at #= 1.
Using Equation (7), the SD investment problem can be

formulated as

V SD�∗CVaR#

= max
K1≥0�����KN≥0�

v

{
v+ 1

#
EX̃�Ỹ

[
min

{
W̃SD�K1�����KN �−v�0

}]}
� (B-2)

As with loss aversion, the SD investment problem cannot be
decomposed into N single-product problems. For the two-
product case, one can show that

EX̃�Ỹ�min!W̃SD�K1�K2�−v�0"�
= �1−�1��1−�2�G00�K1�K2�v�+�1�1−�2�G10�K1�K2�v�
+�1−�1��2G01�K1�K2�v�+�1�2G11�K1�K2�v�� (B-3)

where the Gy1�y2
�K1�K2�v� expressions can be found in

Appendix D. Numerical results (available from the authors
on request) prove that the flexibility premium +CVaR can be
negative, so SD can be strictly preferable to SF even when
the flexible resource costs the same or less than the ded-
icated resources, a result that echoes the loss-averse case.
In the case of CVaR, the downside resource-disaggregation
benefit of the dedicated strategy is amplified by the fact that
the left tail of the profit distribution is always factored in,
whereas the right tail is not, with the result that SD can out-
perform SF.

Appendix C. Expressions for P�8k� and Line
Integrals Ik�K1�K2�K3�

P�81�=
∫ �

K1

∫ �

0
fX�x1�x2� dx2 dx1

P�82�=
∫ �

K1+K3

∫ �

0
fX�x1�x2� dx2 dx1

P�83�=
∫ K1+K3

K1

∫ �

K1+K3−x1
fX�x1�x2� dx2 dx1

P�84�=
∫ K1+K3

K1

∫ �

K1+K2+K3−x1
fX�x1�x2� dx2 dx1

P�85�=
∫ �

0

∫ �

K2

fX�x1�x2� dx2 dx1

P�86�=
∫ K3

0

∫ �

K2+K3−x1
fX�x1�x2� dx2 dx1

P�87�=
∫ �

K3

∫ �

K2

fX�x1�x2� dx2 dx1

P�88�=
∫ �

K1+K3

∫ �

K2

fX�x1�x2� dx2 dx1

P�89�=
∫ K1

0

∫ �

K2+K3
fX�x1�x2� dx2 dx1

P�810�=
∫ �

K3

∫ �

0
fX�x1�x2� dx2 dx1

P�811�=
∫ K3

0

∫ �

K3−x1
fX�x1�x2� dx2 dx1

P�812�=
∫ K1

0

∫ �

K3

fX�x1�x2� dx2 dx1

I1�K1�K2�K3�=
∫ K1

0
fX�x1�K2+K3� dx1

I2�K1�K2�K3�=
∫ K1+K3

K1

fX�x1�K1+K2+K3− x1� dx1

I3�K1�K2�K3�=
∫ �

K1+K3
fX�x1�K2� dx1

I4�K1�K2�K3�=
∫ K2

0
fX�K1+K3�x2� dx2

I5�K1�K2�K3�=
∫ �

K2+K3
fX�K1�x2� dx2

I6�K1�K2�K3�=
∫ �

K2

fX�K1+K3�x2� dx2
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Appendix D. Gy1y2
�K1�K2� and Gy1y2

�K1�K2�v�
Expressions

We present the expressions for the general case where
the marginal committed costs (�) and marginal total costs
(c) can differ for resources 1 and 2. The Gy1y2

�K1�K2�
expressions found in Equation (24) in the loss-averse sec-
tion are given by Gy1y2

�K1�K2�=Gy1y2
�K1�K2�v= 0�, where

Gy1y2
�K1�K2�v� are given below. We present the more gen-

eral Gy1y2
�K1�K2�v� expressions because they are used in

the CVaR analysis.

G00�K1�K2�v�=


0 for v<−�c1�1K1+c2�2K2�
−�c1�1K1+c2�2K2+v�
for v≥−�c1�1K1+c2�2K2�

G10�K1�K2�v�=



pLX2

(
c1�1K1+c2K2+v

p

)
−�c2K2+c1�1K1+v�
·FX2

[
c1�1K1+c2K2+v

p

]
for v≤ �p−c2�K2−c1�1K1

p�LX2 �K2�+K2�1−FX2 �x2���
−�c2K2+c1�1K1+v�
for v>�p−c2�K2+c1�1K1

G01�K1�K2�=



pLX2

(
c1�1K1+c2K2+v

p

)
−�c2K2+c1�1K1+v�FX2

[
c1�1K1+c2K2+v

p

]
for v≤ �p−c2�K2−c1�1K1

p�LX2 �K2�+K2�1−FX2 �x2���
−�c2K2+c1�1K1+v�
for v>�p−c2�K2+c1�1K1

v≤min!�p−c1�K1−c2K2��p−c2�K2−c1K1" ⇒

G11�K1�K2� = p

(
NX1�X2

(
c1K1+c2K2+v

p

)
+OX1�X2

(
c1K1+c2K2+v

p

))
−�c1K1+c2K2+v�MX1�X2

(
c1K1+c2K2+v

p

)
�p−c2�K2−c1K1<v≤ �p−c1�K1−c2K2 ⇒
G11�K1�K2�

=pLX1
(
c1K1−�p−c2�K2+v

p

)
+p�LX2 �K2�+K2�1−FX2 �K2���

·FX1
[
c1K1−�p−c2�K2+v

p

]
−�c1K1+c2K2+v�FX1

[
c1K1−�p−c2�K2+v

p

]

+ p

(
NX1�X2

(
c1K1− �p− c2�K2+ v

p
�
c1K1+ c2K2+ v

p

)
+OX1�X2

(
c1K1− �p− c2�K2+ v

p
�
c1K1+ c2K2+ v

p

))
− �c1K1+ c2K2+ v�

·MX1�X2

(
c1K1− �p− c2�K2+ v

p
�
c1K1+ c2K2+ v

p

)
�p− c1�K1− c2K2 <v≤ �p− c2�K2− c1K1 ⇒
G11�K1�K2�

= p

(
NX1�X2

(
c1K1+ c2K2+ v

p

)
−NX1�X2

(
K1�

c1K1+ c2K2+ v

p

)
+OX1�X2

(
c1K1+ c2K2+ v

p

)
−OX1� X2

(
K1�

c1K1+ c2K2+ v

p

))
− �c1K1+ c2K2+ v�

·
(
MX1�X2

(
c1K1+ c2K2+ v

p

)
−MX1�X2

(
K1�

c1K1+ c2K2+ v

p

))
+
(
�pK1− c1K1− c2K2− v�FX2

[
c2K2− �p− c1�K1+ v

p

]
+ pLX2

(
c2K2− �p− c1�K1+ v

p

))
�1− FX1 �K1��

v>max!�p−c1�K1−c2K2��p−c2�K2−c1K1" ⇒
G11�K1�K2�

=pLX1
(
c1K1−�p−c2�K2+v

p

)
+p�LX2 �K2�

+K2�1−FX2 �K2���FX1
[
c1K1−�p−c2�K2+v

p

]
−�c1K1+c2K2+v�FX1

[
c1K1−�p−c2�K2+v

p

]
+p

(
NX1�X2

(
c1K1−�p−c2�K2+v

p
�
c1K1+c2K2+v

p

)
−NX1�X2

(
K1�

c1K1+c2K2+v
p

))
+p

(
OX1�X2

(
c1K1−�p−c2�K2+v

p
�
c1K1+c2K2+v

p

)
−OX1�X2

(
K1�

c1K1+c2K2+v
p

))
−�c1K1+c2K2�

·
(
MX1�X2

(
c1K1−�p−c2�K2+v

p
�
c1K1+c2K2+v

p

)
−MX1�X2

(
K1�

c1K1+c2K2+v
p

))
+
(
�pK1−c1K1−c2K2−v�FX2

[
c2K2−�p−c1�K1+v

p

]
+pLX2

(
c2K2−�p−c1�K1+v

p

))
�1−FX1 �K1��
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where

MX1�X2
�w1�w2�=

∫ w2

w1

FX2 �w2− x1�fX1 �x1� dx1�

NX1�X2
�w1�w2�=

∫ w2

w1

x1FX2 �w2− x1�fX1 �x1� dx1�

OX1�X2
�w1�w2�=

∫ w2

w1

LX2 �w2− x1�fX1 �x1� dx1�

MX1�X2
�w�=MX1�X2

�0�w��

NX1�X2
�w�=NX1�X2

�0�w�

and

OX1�X2
�w�=OX1�X2

�0�w��

Appendix E. Linear Program Formulations for
Investment Problem

There are a total of M = 2J possible yield scenarios. A yield
scenario m = 1� � � � �M is defined by a vector �ym1 � � � � � y

m
J �

where ymj ∈ !0�1", with ymj = 0 denoting failure. The prob-
ability of scenario m is denoted by �m. Let there be I dif-
ferent demand scenarios, each defined by a demand vector
�xi1� � � � � x

i
N �, with probability �

i, i= 1� � � � � I . If the demand
scenarios are randomly generated from some joint distribu-
tion X̃, then �i = 1/I for i = 1� � � � � I . By assumption, yields
are independent of demands and so we have a total of MI
yield-demand scenarios, each specified by an mi pair with
an associated probability of �mi = �m�i.

Risk-neutral linear program (LP) formulation:

max
I∑
i=1

M∑
m=1

�miwmi

subject to

wmi =
N∑
n=1

pns
mi
n −

J∑
j=1
cj ��j+�1−�j�ymj �Kj�

m=1�����M� i=1�����I (E-1)

smin ≤ xin� n=1�����N� m=1�����M� i=1�����I (E-2)

smin ≤
J∑
j=1
tnjq

mi
nj � n=1�����N� m=1�����M� i=1�����I (E-3)

N∑
n=1

qminj ≤ ymj Kj� j=1�����J � m=1�����M� i=1�����I (E-4)

Kj�s
mi
n �q

mi
nj ≥ 0� n=1�����N� j=1�����J �

m=1�����M� i=1�����I � (E-5)

Loss-averse LP formulation:

max
I∑
i=1

M∑
m=1

�mi�wmi�+ − wmi�−�

subject to

wmi�+−wmi�− = wmi� m=1�����M� i=1�����I (E-6)

wmi�+�wmi�− ≥ 0� m=1�����M� i=1�����I
and (E-1), (E-2), (E-3), (E-4), (E-5). (E-7)

CVaR LP formulation:

max
{
v+ 1

#

I∑
i=1

M∑
m=1

�mizmi
}

subject to

zmi ≤ wmi − vmi� m= 1� � � � �M� i= 1� � � � � I (E-8)

zmi ≤ 0� m= 1� � � � �M� i= 1� � � � � I
and (E-1), (E-2), (E-3), (E-4), (E-5)� (E-9)
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