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Abstract: There has been a dramatic increase over the past decade in the number of firms that source finished product from
overseas. Although this has reduced procurement costs, it has increased supply risk; procurement lead times are longer and are
often unreliable. In deciding when and how much to order, firms must consider the lead time risk and the demand risk, i.e., the
accuracy of their demand forecast. To improve the accuracy of its demand forecast, a firm may update its forecast as the selling
season approaches. In this article we consider both forecast updating and lead time uncertainty. We characterize the firm’s optimal
procurement policy, and we prove that, with multiplicative forecast revisions, the firm’s optimal procurement time is independent
of the demand forecast evolution but that the optimal procurement quantity is not. This leads to a number of important managerial
insights into the firm’s planning process. We show that the firm becomes less sensitive to lead time variability as the forecast updating
process becomes more efficient. Interestingly, a forecast-updating firm might procure earlier than a firm with no forecast updating.
© 2009 Wiley Periodicals, Inc. Naval Research Logistics 56: 766–779, 2009
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1. INTRODUCTION

The pressure to reduce direct manufacturing costs has led
many firms to outsource production to lower-cost countries.
As a result, North American and European firms are faced
with longer procurement lead times. Moreover, the procure-
ment lead times are often uncertain. Delays can occur for
many reasons, including transportation-infrastructure issues
in rapidly-developing economies, congestion in foreign and
domestic ports, customs inspections, and logistical issues
involving export quotas. Long and uncertain lead times are
especially problematic for firms with short selling seasons.
One of the authors previously worked in the custom-design
drawnwork (textile) industry. For reasons of cost, US drawn-
work wholesalers source from Chinese suppliers. The typical
lead time is on the order of 3 months but there is signif-
icant uncertainty around this for the reasons cited earlier.
The US wholesalers sell the product to domestic customers
in the fall but, because of the lead time, have to source the
drawnwork before their customers place orders. In essence,
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the US wholesalers face a newsvendor-type problem with an
uncertain lead time.

Firms from many industries face a similar problem. The
issue of supply uncertainty is of growing managerial con-
cern, as evidenced from the following excerpts from reports
by the “The Economist and The Boston Consulting Group
(BCG):”

Last autumn some 80m items of clothing were
impounded at European ports and borders because
they exceeded the annual import limits that the Euro-
pean Union and China had agreed on only months
earlier. Retailers had ordered their autumn stock well
before that agreement was signed, and many were
left scrambling. (When the Chain Breaks. The Econ-
omist. 2006.)

In the run up to Christmas 2004, grid-lock hit
the Los Angeles-Long Beach ports, the entry point
for almost half the goods coming into the United
States. Nearly 100 ships floated around, cooling
their keels and waiting to be unloaded – a process
that was taking up to twice as long as usual. The
results of the dock jam were serious and far reaching.

© 2009 Wiley Periodicals, Inc.



Wang and Tomlin: To Wait or Not to Wait 767

The sharper image, for one, claimed that Novem-
ber sales had been adversely affected by reduced
inventory resulting from congestion at the ports. Now
companies are ordering earlier. (Avoiding Supply
Chain Shipwrecks. BCG. 2005)

Ordering earlier reduces the “lateness” risk associated with
uncertain lead times but it also increases the firms’ demand
risk, i.e., the potential mismatch between the quantity pro-
cured and the realized demand. In industries with short selling
seasons, firms often use various sources of information to
improve the accuracy of demand forecasts. Examples of such
sources include pre-season orders, sales force interactions
with customers, trade shows, and market trend reports. The
demand forecast improves as more information is obtained
over time and, therefore, the longer the firm waits before
procuring the product, the more information it has and its
demand risk decreases. Thus, the firm faces a trade-off: order
earlier to reduce supply risk or order later to reduce demand
risk.1 A primary purpose of this research is to investigate this
trade-off.

In this article, we characterize the firm’s optimal procure-
ment timing-and-quantity decision under supply risk and
forecast updating. We also determine how supply and mar-
ket attributes influence the firm’s optimal procurement time
and optimal expected cost. This leads to a number of inter-
esting findings. We prove that, with multiplicative forecast
revisions, the firm can determine its optimal procurement
time at the start of its planning horizon but that its optimal
procurement quantity will depend on the particular realiza-
tion of the evolving demand forecast. One might expect that
a forecast-updating firm would procure closer to the sell-
ing season to take advantage of increasing demand-forecast
accuracy. We prove that this is not necessarily true. There are
situations in which, all else being equal, a forecast-updating
firm will place its order earlier than a firm with no forecast
updating. We prove that this can only occur if the lead time is
uncertain. Furthermore, we show that, as its forecast updating
process becomes more efficient, a firm becomes less sensitive
to lead-time variability.

The rest of this article is organized as follows. We dis-
cuss the relevant literature in Section 2. Section 3 describes
the model. We characterize the optimal procurement policy
in Section 4 and discuss managerial implications in Section
5. Extensions to our model are considered in Section 6 and
concluding remarks are presented in Section 7. Additional
materials (technical lemmas and heuristics) can be found in
a supplementary appendix.

1 This trade-off can also be seen as the interaction between two
distinct but related trade-offs: between overage and underage cost
in satisfying demand, and between earliness and lateness of order
arrivals relative to the selling season. We thank the associate editor
for pointing out this alternative interpretation.

2. LITERATURE

This article connects two important streams of literature in
supply chain management, namely, the uncertain-supply and
dynamic-forecasting streams. We first review the relevant lit-
erature on uncertain supply and then turn our attention to the
dynamic-forecasting literature. In the end, we briefly discuss
the literature on advanced demand information.

Generally speaking, the uncertain-supply literature can be
divided into three different but related categories; supply-
disruption models, random-yield models, and stochastic lead-
time models. The disruption literature typically models a
supplier as alternating between up and down phases e.g.,
[3, 13, 21, 23, 28, 33]. Orders placed when the supplier is up
are received on time and in full. No order can be placed when
the supplier is down. The random yield literature considers
settings in which the quantity received varies in a random
fashion from the quantity ordered. We refer the reader to [41]
for a review of the random-yield literature. We note that
the distinction between disruptions and random yield is less
sharp from a manager’s perspective, in that stochastically-
proportional Bernoulli random-yield models are appropriate
models for supply failures e.g., [2, 30, 34–36].

Our article is in the stochastic lead-time category. Sto-
chastic lead times have typically been studied in a recurring-
demand setting rather than in a newsvendor setting. For the
recurring-demand setting, [4] and [26], for example, inves-
tigate the impact of lead time variability in a single-item
inventory model. They focus on quantifying the impact of
lead time uncertainty on metrics such as the risk of stock out
and the optimal cost. A recent article [19] investigates contin-
gency strategies under lead time uncertainty with a constant
demand rate. We refer readers to [42] for a comprehensive
discussion of stochastic lead times in the context of recurring
demand.

A question arises in the newsvendor setting that does not
arise in the recurring-demand setting; when should the order
be placed? There is an extensive stream of literature in the
optimal stopping (time) problem in economics and statis-
tics about sequential decision making and sample testing.
We refer the reader to [24] for a comprehensive treatment
of the discrete-time Markov decision processes. From the
inventory management perspective, this optimal timing deci-
sion has been studied in the context of a newsvendor that
assembles multiple components into a finished product e.g.,
[18, 20, 25, 27, 40]. We note that all these articles resort to
heuristics and they do not consider demand forecast updating.
Our focus on a single-component product allows us to analyt-
ically characterize the optimal timing decision and generate
important managerial insights.

We now turn our attention to dynamic forecast updating.
There is a vast literature on inventory management with fore-
cast updating, but to the best of our knowledge, ours is the first
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article to consider demand updating in an uncertain-supply
setting. The forecast-updating literature can be broadly clas-
sified into three related approaches: Markovian, time series,
and Bayesian. Our article most closely follows the Markov-
ian forecast revision approach, as developed by [16] and later
extended by [17] and [11]. The Markovian forecast revi-
sion approach has been commonly adopted in the operations
literature e.g., [6, 7, 12, 22, 32].

There are two variants to the Markovian forecast revision
approach: additive and multiplicative. The additive model
assumes new information is additive and forecast revisions
are independent and normally distributed. In contrast, the
multiplicative model treats new information as multiplica-
tive, implying that the ratios of successive forecast revisions
are independent and lognormally distributed. In this article,
we follow the multiplicative forecast updating model. In [17]
it was noted that the multiplicative model provided a better fit
to their empirical data, which exhibits the property that “the
standard deviation of forecast error was roughly proportional
to the size of the forecast.” (p. 22) This property is consistent
with the multiplicative model but not with the additive model.

A number of game-theoretic articles, e.g., [8,9,14], inves-
tigate forecast updating in a manufacturer-supplier setting.
Their forecast-updating models do not fit naturally into the
above categorization. In essence, they assume a second order-
ing opportunity at which time some of the initial forecast
uncertainty has been resolved.

Our work is somewhat related to the literature on advanced
demand information. One stream of that literature focuses
on the coordination of operations and marketing decisions,
i.e., the optimal ordering quantity and level of price dis-
count, respectively. Refer [31, 38, 39]. Another stream e.g.,
[10, 15, 37], focuses on the optimality of base stock or (s,S)
policies when customer orders do not require instantaneous
fulfilment. Therefore, the firm, effectively, has advanced
demand information.

Finally, we note that while there is an extensive literature
on stochastic lead times and on demand forecast updating, to
the best of our knowledge no existing article links these two
literatures. A key contribution of our article is to provide one
such link.

3. MODEL

In what follows, we first describe the time line, then the
demand and supply models, and conclude with a description
of the relevant cost and the problem formulation.

3.1. Time Line

We consider a firm that sells a seasonal product. We use
a discrete time, finite horizon model and adopt the conven-
tion that 0 is the starting period, the selling season occurs in

period T , and that 0 ≤ t ≤ T indicates the current period.
Throughout the article we refer to the points of time where
decisions are made as decision epochs, and we adopt the con-
vention that a decision epoch corresponds to the beginning of
a period. In addition, we refer to the time interval between two
decision epochs (i.e., the length of a period) as the decision
interval.2

The firm has a forecasting process in place: at the start of
period 0 it has an initial forecast of demand, and, as time
evolves, the firm updates its forecast in each period to incor-
porate new information. The firm’s forecast becomes more
accurate as the selling season approaches. By the start of the
selling season, however, the firm’s forecast may not resolve
all demand uncertainty; some residual uncertainty may still
exist. The amount of residual uncertainty depends on the fore-
cast performance: a perfect forecasting process will leave no
residual uncertainty whereas a less than perfect process will
leave some residual uncertainty. In the extreme case of no
forecast updating, no demand uncertainty is resolved before
the season. The forecast model and the notion of residual
uncertainty will be formalized in the next subsection.

The firm may procure in any period 0 ≤ t ≤ T , but it
is allowed to procure only once in the horizon.3 This is a
reasonable assumption for firms that source from emerging
economies, especially for those who do not have a contin-
gent domestic supplier that can provide quick responses. In
deciding when to procure, the firm has to balance its supply
and demand risk. Procuring early incurs a higher demand risk
because the firm’s forecast is less accurate and procuring late
incurs a higher supply risk because the order may be late due
to lead time uncertainty. If the order is late, i.e., arrives after
T , similar to [27] the firm incurs a tardiness penalty cost but
customer demand is not lost due to tardiness. Note that in
Section 6 we explicitly model tardiness related lost sales.

3.2. Demand Updating

In what follows we first describe the forecast updat-
ing process, which is an application of the Multiplicative
Markovian Forecast Revision (MMFR) approach [16]. We
then derive the firm’s demand distribution by extending the
MMFR model to allow for residual uncertainty. Note that the
MMFR model is supported by empirical evidence in actual
forecasts (see, for example, p. 94 in [5], p. B-97 to B-102
in [16], and p. 22 in [17]). For ease of understanding, in what

2 We note that T denotes the number of decision epochs, and there-
fore, the decision interval will depend on the length of the time
horizon. When there is no possibility of ambiguity, we at times also
use T to refer to the time horizon.
3 We do not consider the case where the firm might order after the
selling season already starts. This is a mild restriction and it can be
easily relaxed at the cost of some additional notation.
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follows we briefly state the properties of the discrete time
MMFR and then derive the demand forecast distribution.

Let Xt and Xt+1 denote successive forecasts made at time
t and t + 1 for the demand at time T . Then by MMFR,

PROPERTY 1: The ratios of successive forecasts, �t =
Xt+1/Xt , t = 0, . . . , T − 1, form a series of independent,
lognormally distributed random variables.

We further assume that the �t ratios are identically dis-
tributed with parameters (µ, σ). In Section 6 we relax
this assumption, but for expositional ease we focus on the
independent-ratio model in this article. Note that, the para-
meters µ and σ are influenced by the decision intervals: if
the decision intervals change, then these parameters will also
change.

PROPERTY 2: The series of successive forecasts have the
Markov property.

In other words, the future forecast evolution’s depen-
dence on the past is fully captured by the current real-
ized forecast, xt . Using Properties 1 and 2 and the fact
that the product of lognormally distributed random vari-
ables is also lognormally distributed, one can establish that
the forecast to be made j periods ahead, i.e., Xt+j , satis-
fies ln Xt+j ∼ N(jµ + ln xt ,

√
jσ ). It follows that if the

realized forecast at current time t is xt , then at time t , the
distribution of the forecast made at T , i.e., XT , satisfies
ln XT ∼ N((T − t)µ + ln xt ,

√
T − tσ ).

The distribution (at time t) of most interest to us is not that
of XT but rather that of XD , i.e., the demand. As discussed
earlier, we do not assume that demand uncertainty is fully
resolved before the start of the selling season, that is, we do
not assume that XD/XT = 1 with probability 1. Instead, we
assume that XD/XT = �̂, where �̂ reflects residual uncer-
tainty and is lognormally distributed with parameters µ̂ and
σ̂ . We are now in a position to derive the firm’s demand distri-
bution at any time t . At current time t , let ft (·|xt ) denote the
conditional probability density function (PDF) of the demand
XD , given the realized forecast at t is Xt = xt . From the above
description, XD is lognormally distributed and we have

ft (x|xt ) = 1√
2πψσ (t)x

exp

(−(ln x − ψµ(t) − ln xt )
2

2ψσ (t)

)
,

where ψσ (t) = (T − t)σ 2 + σ̂ 2 and ψµ(t) = (T − t)µ + µ̂.
Note that ψσ (t) measures the remaining uncertainty in the
demand that is not yet resolved by the forecasting process,
and ψµ(t) measures the expected drift in the demand.

Finally, we introduce a useful measure to determine how
“good” a forecasting process is. Intuitively, everything else
being equal, a good process should have less residual demand

uncertainty as compared with a poor process. Now, ψσ (t) is
a measure of the uncertainty remaining at time t . We there-
fore operationalize the concept of “goodness” of a forecasting
process by defining λ = 1 − ψσ (T )/ψσ (0) as the forecast
efficiency. A higher λ reflects less residual uncertainty (rel-
ative to the initial uncertainty) and, therefore, the higher the
λ, the more efficient is the forecasting process. At λ = 1,
the forecasting process fully resolves demand uncertainty by
time T . On the other hand, when λ = 0, there is no forecast
updating, i.e., the residual uncertainty is equal to the initial
demand uncertainty. Note that λ = 1 if and only if σ̂ = 0.
That is, as long as there exists residual uncertainty, the fore-
cast cannot be perfect. Conversely, λ = 0 if and only if σ = 0.
That is, the firm’s belief about demand does not change over
time, i.e., there is no forecast updating.

3.3. Supply

Oftentimes, there are two aspects to supply uncertainty. An
order might be delayed or not, and if it is delayed, the length
of delay may be uncertain. For example, a shipment might be
selected for customs inspection and the resulting time spent
in inspection might be uncertain. Similarly, a shipment might
be delayed due to a port disruption, such as the 2002 US west-
coast disruption, and the resulting delay might be uncertain.
Let L denote the standard lead time and ω denote a stochastic,
non-negative delay. Then, with probability θ , there is a delay
and the lead time is L+ω; with probability 1− θ , there is no
delay and the lead time is simply L. Our model collapses to
a constant lead time case when θ = 0 and a pure stochastic
lead time case when θ = 1. Hereafter, we refer to θ as the
delay probability and ω as the delay.

We assume that both the cumulative distribution function
(CDF) and PDF of the delay exist and denote them by G(·)
and g(·), respectively. Note that while decisions are made at
discrete points in time, the delay is not restricted to deci-
sion epochs, and hence, the order can arrive at any time
between decision epochs. It is therefore perfectly reasonable
to account for the expected delay using the continuous dis-
tribution G(·). Let x+ = max{x, 0} and x− = max{−x, 0}.
Define expected earliness and tardiness as

A(t) = (1 − θ)(T − L − t)+

+ θ

∫ (T −L−t)+

0
((T − L − t)+ − ω)g(ω)dω,

B(t) = (T −L−t)−+θ

∫ ∞

(T −L−t)+
(ω−(T −L−t)+)g(ω)dω,

where t is the time when an order is placed. Note that A(t)

is the expected duration that the order spends in inventory
before the season and B(t) is the expected duration by which
the order is late.
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3.4. Costs and Problem Formulation

Let c, h, s, r , and p represent the unit purchasing cost,
holding cost, salvage value, revenue, and tardiness penalty,
respectively. We assume the same tardiness penalty structure
as in [27], that is, the incurred tardiness cost is linear in the
realized delay. The tardiness penalty can be a tangible cost,
a proxy for good will or loss demand, or a combination of
these factors.

If the firm procures at the beginning of period t , then the
expected profit, given the realized forecast of the demand xt

and the procurement quantity y, can be expressed as

ṽ(t , xt ) = max
y≥0

{
− cy + r min{y, E[XD|xt ]}

+ s E
[
(y − XD)+|xt

] − hA(t)y − pB(t) E[XD|xt ]
}

. (1)

Note that (1) is a classic newsvendor formulation with two
additional time-based terms that reflect the holding and tar-
diness costs4: the expected holding cost is hA(t)y and the
expected tardiness cost is pB(t) E[XD|xt ]. To follow the cost
minimization approach commonly used in classical inventory
literature, we rewrite (1) from a cost perspective, i.e.,

v(t , xt ) = min
y≥0

{
cy + r E

[
(XD − y)+|xt

]−
s E

[
(y − XD)+|xt

] + hA(t)y + (pB(t) − r) E[XD|xt ]
}

.

(2)

The firm’s decision problem can be formulated as a binary
discrete-time Markov decision process (MDP).5 Let ut (xt )

be the minimum expected cost at the beginning of period t (if
the firm has not yet ordered) when the forecast is xt . Then,
the optimality equation is

uT (xT ) = v(T , xT ),

ut (xt ) = min{v(t , xt ), E ut+1(�t · xt )}, (3)

where recall �t is lognormally distributed with parameter
(µ, σ). At each decision epoch, the firm must decide whether
to place an order (and decides the order quantity) or wait for
one more period. Recall that the last decision epoch in (3) is
T − 1, i.e., if the firm has not ordered by time T − 1 then
the firm will order at time T . The firm’s objective is to find a

4 As in [27], the tardiness penalty is applied to the expected demand.
However, all key results hold when the tardiness penalty depends on
satisfied demand, i.e., E[min{XD , y}|xt ]. This is further discussed
in Section 6.
5 We thank an anonymous referee who suggested using a discrete-
time approach rather than our original continuous-time approach.
This suggestion allows similar results to be established in a more
concise and elegant fashion.

policy for placing the order that minimizes the expected cost.
Note that we ignore discounting so as to focus on the primary
trade off between supply and demand risks.

We conclude this section by introducing the following
assumptions. These are made solely for expositional clarity
and are assumed to hold throughout the rest of the article (all
analysis and results hold without these assumptions, details
available upon request).

1. Without loss of generality, we scale the initial
demand forecast x0 = 1.

2. We restrict attention to T > L, i.e., the starting point
is at least a standard lead time before the selling
season.6

4. OPTIMAL PROCUREMENT POLICY

We first introduce a useful lemma for the optimal procure-
ment quantity for any given procurement time t and realized
forecast xt .

LEMMA 1: For any given procurement time t and realized
forecast of demand xt , the optimal procurement quantity is
given by

y∗(t , xt ) = F−1
t

(
r − c − hA(t)

r − s
|xt

)
, (4)

where F−1
t (·|xt ) denotes the conditional inverse distribution

function of XD at time t .

Under the conditions stated in Lemma 1, the optimal
procurement quantity is a newsvendor-type expression with
an appropriately defined distribution function. Note that
y∗(t , xt ) in (4) reduces to the standard newsvendor solution
if t ≥ T −L, i.e., if the firm does not procure until it is within
a standard lead time of the selling season.

Given Lemma 1, finding the optimal procurement time t∗
becomes the key to characterizing the optimal procurement
policy. By (3), it is optimal to place an order (if the firm has
not ordered yet) at time t if

v(t , xt ) ≤ E ut+1(�t · xt ), (5)

and hence the firm’s objective is to find t∗ = inf{t :
v(t , xt ) ≤ E ut+1(�t · xt )}. Note that (5) is defined for
t = 0, 1, . . . , T − 1. In what follows, we simplify (5) and
establish an important theorem that considerably simplifies

6 The case of T < L is quite straightforward (with the optimal
solution being to either order immediately or wait until T .) This
assumption allows us to focus on the more interesting case, i.e.,
T > L.
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the determination of t∗. First, we establish the following
lemma on the firm’s minimum expected cost.

LEMMA 2: v(t , xt ) is separable in xt and t , i.e., there exists
a real valued function v̂(·) such that v(t , xt ) = xt · v̂(t).

The previous lemma utilizes the decomposability property
of the lognormal distribution, where decomposability refers
to the fact that a lognormal random variable can be expressed
as the product of n independent random variables.7 Using
Lemma 2, we can establish by induction that the minimum
expected cost function ut (·) (refer (3)) is a homogeneous
function of degree 1; that is, ut (αxt ) = αut (xt ). Therefore,
we have

uT (xT ) = xT v̂(T ),

ut (xt ) = xt min{̂v(t), E ut+1(�t)}, (6)

where v̂(t) is independent of xt . Hence (5) can be reduced to

v̂(t) ≤ E ut+1(�t). (7)

As a result, whether an order should be placed at time
t depends on the sign of v̂(t) − E ut+1(�t), which is
independent of xt . The following theorem ensues.

THEOREM 1: The optimal procurement time t∗ is inde-
pendent of the forecast updating process Xt .

Theorem 1 and Lemma 1 together characterize the struc-
ture of the optimal procurement policy: (i) the optimal time
is independent of the forecast evolution Xt (Theorem 1), and
(ii) the optimal quantity depends on the forecast evolution
and is given by (4). Care should be taken when interpreting
Theorem 1. Although it establishes that the current forecast
level Xt does not influence the optimal procurement time, it
does not state that the forecasting process has no impact.
In fact, as will be seen later (as a consequence of Theo-
rem 2), the forecasting process does influence the optimal
procurement time through ψσ (t), or in other words, through
the forecast parameter σ . Although the current forecast level
Xt does influence the magnitude of the expected total cost,
it does not influence the timing-induced tradeoff amongst
the expected procurement, overage, underage, earliness, and
lateness costs.

While this timing independence result can be extended to
allow for correlated forecast revisions and time-dependent
parameters (refer Section 6), the result does depend on

7 See [29] (p. 508) for a rigorous discussion of the decomposabil-
ity of the lognormal distribution. We thank the AE for pointing out
this decomposability approach that admits a more elegant proof for
Lemma 2.

the decomposability attribute of the lognormal distribution.
However, as discussed earlier, the lognormal assumption
for forecast revisions is a reasonable one. This timing-
independence result has an important managerial implica-
tion: the firm can determine its optimal procurement time in
advance but it must wait until that time to determine its pro-
curement quantity. The fact that the firm can determine its
procurement time in advance is very beneficial from a plan-
ning perspective. For example, the firm may notify its supplier
of the upcoming procurement plan (time) such that the sup-
plier can better prepare for the future production request in
advance.

4.1. Optimal Procurement Time

Having characterized the structure of the optimal procure-
ment policy, we now proceed to solve the firm’s optimal
procurement time t∗. By Theorem 1, when deciding whether
to place an order now or wait for one more period, it is suffi-
cient to study the behavior of v̂(t)−E ut+1(�t) as a function
of t . To simplify our analysis, we rewrite the optimality Eq.
(6) in terms of w(t), using the relationship w(t) = ut (x)/x:

w(T ) = v̂(T ),

w(t) = min{̂v(t), E[�t · w(t + 1)]}. (8)

We analyze (8) by backward induction in time t . First consider
the last decision epoch T − 1. We have

w(T − 1) = min
{̂
v(T − 1), E

[
�T −1 · w(T )

]}
= min

{̂
v(T − 1), E

[
�T −1

] · v̂(T )
}

= min
{
v̂(T − 1), eµ+σ 2/2 · v̂(T )

}
, (9)

where the last step follows from the fact that the forecast revi-
sion �t ’s are lognormally distributed. Using Lemma 1 and
2, one can rewrite v̂(t) as (refer technical Lemma A2)

v̂(t) = e(ψµ(t)+ψσ (t)/2) · M(t), (10)

where M(t) = pB(t)−(r−s)(1+erf(k(t)−√
ψσ (t)/2))/2,

and k(t) = erf−1(2(r − c − hA(t))/(r − s) − 1). Note that
erf(y) = 2√

π

∫ y

0 e−x2
dx is the “error” function associated

with the normal distribution, and it has a nice property of
being monotonic in its argument. Refer p. 297 in [1] for more
details about the error function and the closely related com-
plementary error function erfc(·). Substituting (10) into (9),
we obtain

w(T − 1) = min
{
e(ψµ(T −1)+ψσ (T −1)/2) · M(T − 1), eµ+σ 2/2

· e(ψµ(T )+ψσ (T )/2) · M(T )
}

= e(ψµ(T −1)+ψσ (T −1)/2) · min{M(T − 1), M(T )}, (11)
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where the second step follows from the definition of ψµ(t)

and ψσ (t). Therefore, if the firm has not yet placed an order,
it can decide whether or not to place an order at time T −1 by
evaluating the sign of M(T − 1) − M(T ). In particular, the
firm should place an order immediately if M(T −1) ≤ M(T )

and should wait until next period otherwise. More generally,
one can establish by induction that

w(t) = e(ψµ(t)+ψσ (t)/2)

· min {M(t), min{M(t + 1), M(t + 2), . . . , M(T )}} . (12)

The following theorem ensues.

THEOREM 2: The optimal procurement time t∗ =
arg mint∈{0,1,...,T } M(t).

The above theorem establishes that the optimal procure-
ment time can be found simply by searching (restricting to
decision epochs) over the M(t) function for the minimum
point.8 In what follows, we consider the special case when
there is no forecast updating (forecast efficiency λ = 0), i.e.,
the firm does not resolve any demand uncertainty before the
start of the selling season T .

4.1.1. The Case of No Forecast Updating (λ = 0)

Note that while the λ = 0 case can be viewed a special
case of our general model, the analysis involved differs sig-
nificantly from the λ > 0 case. This is because there is no
forecast updating in the λ = 0 case. Hereafter, we refer to
the λ = 0 case as the no forecast updating case. The no fore-
cast updating case itself is of interest because, to the best of
our knowledge, the joint quantity and timing problem under
lead time uncertainty has not been studied in the newsvendor
model before.

We first note that, with no forecast updating, the firm’s
demand distribution is independent of time t . Because of this
independence, we can simply write v(t , xt ) as v(t). Using (2)
and recalling that we scale x0 = 1, the minimum expected
cost if the firm procures at time t is

v(t) = (hA(t) − (r − c))y∗(t) + (r − s) E[(y∗(t) − XD)+]
+ pB(t) E[XD], (13)

8 The M(t) function is in general not well behaved and can assume
very complex shapes. If we do not restrict t to decision epochs, then
(with some additional technical assumptions) we are able to charac-
terize the procurement time that minimizes M(t). This unrestricted
procurement time provides a reasonable approximation to t∗ when
the decision intervals become very short. We refer the reader to The-
orem A1 and Lemmas A7 and A8 in the Appendix for a complete
characterization of this unrestricted procurement time.

where, by Lemma 1, y∗(t) = F−1
0 ((r − c −hA(t))/(r − s)).

Hence, the optimal procurement time is given by t∗ =
arg mint∈{0,1,...,T } v(t). Define t = A−1((r − c)/h). It is
straightforward to show that the optimal procurement time
satisfies �t	 ≤ t∗ ≤ 
T − L�, where �·	 and 
·� represents
floor and ceiling functions, respectively. Note that, for any
t < t , the implied procurement quantity is zero, i.e., the
firm does not participate (in what follows we consider the
more interesting case where the firm does participate). While
we can restrict the range of the t∗, characterizing the opti-
mal procurement time t∗ is not straightforward because (13)
is in general not unimodal in time t . For certain classes of
the delay distribution function G(·), however, we can exploit
structural properties of Eq. (13) and characterize the optimal
procurement time.

For the rest of this subsection, we assume that the delay
distribution satisfies G′′(·) ≤ 0. This is a reasonably mild
assumption and is satisfied by a number of distributions,
including the uniform, exponential, and certain classes of
Weibull and Gamma distributions. The following theorem
characterizes potential candidates for the optimal procure-
ment time t∗. Define I(x) = {�x	, 
x�}.

THEOREM 3: (i) If θ = 0, then t∗ ∈ I(T − L). (ii) If
θ > 0, define

Ĥ (t) = y∗(t)
(1 − θ) + θG(T − L − t)

θ(1 − G(T − L − t))
.

(a) If sup{Ĥ (t)} < (p/h) E[XD], then t∗ ∈ I(t).
(b) If Ĥ (T − L) > (p/h) E[XD], then t∗ ∈ I(T − L).
(c) Otherwise, let sgn(x)

.= x/|x|, define T =
{t : sgn(v(t − 1) − v(t)) 
= sgn(v(t) − v(t + 1))},
then |T | ≤ 2. Let τ be the larger element in T (if
|T | = 2), then t∗ ∈ {τ } ∪ I(T − L).

Part (i) of Theorem 3 states that, if the supply is perfectly
reliable, then the optimal procurement time is around one
standard lead time before the selling season. Part (ii) estab-
lishes the importance of the ratio of the tardiness penalty cost
to the holding cost in the optimal procurement time. In par-
ticular, (ii)(a) says that if this ratio is very high, then the firm
may not participate, i.e., t∗ ∈ I(t); (ii)(b) says that if this ratio
is very low, then the firm orders around a standard lead time
L in advance of the selling season; for intermediate ratios
(ii)(c), the firm uses a procurement time between these two
extremes. Note that if the decision interval is infinitesimal,
then the characterization of t∗ is simpler: T has exactly two
elements and t∗ = τ .

Given the delay distribution is concave, Theorem 3, com-
bined with Lemma 1, completely characterizes the firm’s
optimal procurement policy. In closing, we note that we also
investigate a number of heuristics in Appendix A5.
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Figure 1. Optimal ordering time with and without forecast updating. “+” denotes a forecast updating firm orders closer to the selling season,
“−” denotes a no updating firm orders closer to the selling season, and “=” denotes both ordering at exactly one standard lead time L before
the selling season.

5. IMPLICATIONS OF OPTIMAL POLICY

In this section, we investigate how three important aspects
of the system, i.e., the demand forecast, supply, and cost char-
acteristics, influence the firm’s optimal procurement policy
and the resulting expected cost. At times we will refer to
numeric studies we used to complement the analytical results
developed in this section. The detailed description of the stud-
ies can be found in Appendix A2. In these numeric studies, all
technical assumptions (e.g., G′′(·) ≤ 0 assumed in Section
4.1.1) were relaxed. In what follows we refer to the expecta-
tion, variance, and coefficient of variation (CV) of the delay
distribution G(·) as the mean delay, the delay variance, and
the delay CV, respectively.

5.1. Demand Forecast Characteristics

We focus on an important characteristics of the forecast
process: the forecast efficiency λ that measures the fraction
of demand uncertainty resolved by the forecasting process.
Intuitively, one might expect that given the same starting
demand estimation, the optimal procurement time with fore-
cast updating (λ > 0) would be later than that without fore-
cast updating (λ = 0), because forecast updating enables the
firm to reduce its demand risk by delaying its procurement.
This intuition, however, is not true in general.

THEOREM 4: For identical initial forecasts of demand,
let t∗F and t∗N denote the optimal order time with and without
forecast updating, respectively.9 (a) θ = 0 ⇒ t∗F ≥ t∗N. (b)
h = 0 ⇒ t∗F ≥ t∗N. (c) Otherwise, t∗F can be less than t∗N.

In the case of a deterministic lead time or no holding cost,
i.e., (a) and (b) above, the intuition is correct: a forecast-
updating firm will procure later than a firm that does not
update its forecast. However, when neither of the above two

9 Note that F denotes “Forecast updating” and N denotes “No
forecast updating.”

conditions hold, i.e., case (c) above, the forecast-updating
firm may in fact procure earlier than the “no-updating”
firm. The reason lies in the interplay of the demand and
supply risk. Starting with the same demand forecast, the
forecast-updating firm’s demand risk, i.e., demand uncer-
tainty, reduces over time. For certain cost parameters, a lower
demand variance results in a lower procurement quantity for
a given procurement time. A lower quantity reduces the earli-
ness component of the supply risk, i.e., the inventory-related
cost of an early arrival is lower for a smaller order quantity.
Because of this, it can be optimal under certain circumstances
for the forecast-updating firm to procure earlier than the no
updating firm.

We use a comprehensive numeric study (See Section A2.2
for details) to further investigate conditions under which case
(c) above is more likely to occur. We observed that case (c) is
more likely to occur when (1) the revenue to cost ratio (r/c)
is higher, (2) the salvage value to cost ratio (s/c) is higher, (3)
the unit holding cost h is higher, and (4) the delay probability
θ is moderate. Conditions 1 to 3 push the no updating firm to
order closer to the selling season because they all contribute to
higher inventory holding cost: (1) prompts the firm to order
more (and hence higher holding cost) because the product
is more profitable; (2) also prompts the firm to order more
because the cost of over-stocking is low; (3) directly con-
tributes to higher holding cost. The following figure illustrates
the region (shaded area) where a forecast updating firm (with
λ = 0.4) orders earlier than a no updating firm (λ = 0). Note
that Fig. 1 was obtained with delay probability θ = 0.5, unit
holding cost h = 15%c, and unit salvage value s = 90%c,
except when they are varied in each subfigure. These parame-
ter values are chosen to illustrate the likely region that case
(c) above can occur, and therefore, do not represent typical
scenarios.

In our numeric study, we observed instances, especially
when the r/c and s/c ratios were high, for which the opti-
mal procurement time decreased in the forecast efficiency λ.
However, it was more typical for the optimal procurement
time to increase in the forecast efficiency, that is, the more
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Figure 2. Optimal expected cost (profit) as forecast efficiency λ
increases. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

the forecast process resolved uncertainty, the longer the firm
waited to place its order.

We observed that the optimal expected procurement quan-
tity typically increases in forecast efficiency. The intuition is
that the optimal procurement quantity decreases in demand
volatility when the critical newsvendor fractile is less than
0.5, which is the case for our base case settings (refer
Section A2.1). As discussed earlier, however, when the rev-
enue (salvage value) to cost ratio is relatively high, the firm’s
expected procurement quantity can be strictly decreasing in
forecast efficiency. This observation is consistent with the
fact that the firm orders earlier under these conditions.

In contrast to the procurement time (quantity), a more
efficient forecast always leads to a lower optimal expected
cost. In other words, forecast updating is valuable to the
firm. To further understand the value of forecast efficiency,
we conducted two numeric studies (refer Section A2.2 and
Section A2.3 for details) to investigate the difference in the
optimal expected cost as the forecast efficiency parameter λ

changes. Refer Fig. 2.
We discuss two noteworthy findings. (1) The optimal

expected cost decreases more rapidly as λ approaches to 1.
Thus, a marginal increase in the relative strength of the fore-
cast efficiency has a larger benefit if the forecast is already
efficient. (2) The optimal expected cost becomes less sensi-
tive to the lead time CV as λ increases. Therefore, the firm
with more efficient forecast is more robust to variability in
the lead-time delay.

On average (refer Section A2.3 for details), the cost with
forecast updating at λ = 1 and λ = 0.5 was 29.7% and
8.5% lower than the cost with no forecast updating (λ = 0),
respectively. We note that, in practice, the firm usually incur

a positive forecasting cost, and therefore, the forecasting
benefit discussed earlier would be need to be compared with
the cost of forecasting to evaluate the net benefit.

5.2. Supply Characteristics

In this section, we study how lead time reliability and the
standard lead time affect a firm’s procurement policy and its
expected cost.

5.2.1. Delay Probability

We observed that the optimal procurement time typically
decreases in the delay probability θ . In other words, the firm
places order earlier when the delay probability increases. The
optimal expected procurement quantity follows a similar pat-
tern as being typically decreasing in the delay probability.
This is primarily driven by the fact that the remaining demand
uncertainty is higher when the firm places order earlier.

Although one might expect that the optimal procurement
time always decreases in the delay probability θ , this intuition
is correct only when there is no forecast updating (λ = 0).
Our numeric study indicates that the optimal procurement
time can be increasing or decreasing in the delay probability
when λ > 0. This effect is directly linked to the relation-
ship between the delay probability and the delay CV, which
is further discussed in Section 5.2.2.

The effect of the delay probability on the optimal expected
cost is also nuanced. With deterministic demand, one can
prove that a firm always (at least weakly) prefers a per-
fectly reliable lead time (θ = 0) to an unreliable lead time
(θ > 0), but a marginal increase in the delay probability does
not always hurt the firm: the firm’s optimal expected cost
is not necessarily increasing in the delay probability θ . Our
numeric investigation revealed that even in the case of sto-
chastic demand with or without forecast updating, the firm’s
optimal expected cost can decrease in the lead time delay
probability. We note, however, the firm’s optimal expected
cost at θ > 0 never falls below that at θ = 0.

While surprising, the above observation can be explained
as follows. An increase in the delay probability increases the
mean lead time and this hurts the firm. However, an increase
in the delay probability can decrease the lead time variance
and this benefits the firm. In fact, one can show that the lead
time variance increases in the delay probability if and only if
the delay of CV is greater than or equal to

√
2θ − 1. There-

fore, an increase in the delay probability hurts the firm if the
delay CV is high but may benefit the firm if the delay CV is
low.

5.2.2. Delay CV

The effect of the delay CV is not straightforward. We
observed the optimal procurement time to be increasing or
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decreasing in the delay CV, with it typically being decreasing
for a low CV and increasing for a high CV. At a high delay
CV, a marginal increase in the delay CV serves to increase
the already-high probability of the delay being small, and
this allows the firm to further postpone procurement. At a
low delay CV, the probability of a small delay is low and the
probability of a moderate or large delay is high. A marginal
increase in the CV, while increasing the probability of a small
delay, also increases the probability of a large delay, and this
large-delay effect appears to dominate, with the result that
the firm orders earlier.

The effect of the delay CV on the optimal expected pro-
curement quantity follows a similar pattern, i.e., typically
decreasing for a low CV and increasing for a high CV. The
intuition is that the optimal procurement quantity is closely
linked with the remaining demand uncertainty when the firm
places the order. For typical parameter values, when the firm
orders earlier the higher demand uncertainty leads to a lower
procurement quantity. The case of the firm ordering later can
be similarly reasoned.

In contrast to the effect of the delay probability, the opti-
mal expected cost was always increasing in the delay CV. We
note, however, that as the forecast becomes more efficient, the
optimal expected cost becomes less sensitive to the delay CV.

5.2.3. Standard Lead Time

We first note that, as expected, the firm procures earlier as
the standard lead time L increases. The firm’s optimal pro-
curement quantity and expected cost, however, is independent
of the standard lead time L when there is no forecast updat-
ing (λ = 0). The intuition is that the standard lead time does
not affect the demand uncertainty – the firm merely shifts
its optimal procurement time. As there is no monetary dis-
counting in our model, the shift in the optimal procurement
time does not affect the expected procurement quantity and
cost. This is not true in forecast updating case. With forecast
updating (λ > 0), a reduction in the standard lead time allows
the firm to order later, i.e., when its demand forecast becomes
more accurate. Because of this, the firm’s optimal expected
procurement quantity (typically) decreases as the standard
lead time decreases. In addition, we observed the optimal
expected cost to be concave increasing in the standard lead
time. Therefore, with forecast updating, lead time reduction
efforts becomes increasingly valuable as the standard lead
time decreases.

5.3. Cost Characteristics

In this section, we investigate the sensitivity of the firm’s
optimal procurement policy and the expected cost with
respect to system cost parameters. Note that, for the λ =
0 case, most of the sensitive analysis can be analytically

characterized. For the λ > 0 case, however, it is difficult to
determine the sensitivity direction analytically and we there-
fore primarily present numeric observations. The following
theorem presents the sensitivity analysis for the λ = 0 case,
i.e., when there is no forecast updating.

THEOREM 5: (i) The optimal procurement time t∗ is non-
increasing in the unit tardiness cost p. (ii) The minimum
expected procurement cost is non-decreasing in the unit pro-
curement cost c, the unit holding cost h, and the unit tardiness
cost p, and is non-increasing in the unit revenue r and unit
salvage value s.

Part (i) of the above theorem tells us that the firm procures
earlier as the tardiness penalty cost p increases. Note that the
directional change in t∗ as a function of the unit salvage value
s or unit revenue r depends on the decision interval. Intu-
itively, one might expect that as the holding cost h increases,
the firm would order closer to the season so as to reduce the
expected duration over which inventory is held. Although we
are unable to establish this analytically, our numeric stud-
ies indicate that this intuition is indeed correct. For typical
parameter values, the above sensitivity analysis holds for the
forecast updating case as well.

The optimal expected procurement quantity is closely
related to the remaining demand uncertainty at the order
time and it therefore follows a similar pattern as the opti-
mal procurement time. In other words, the optimal expected
procurement quantity decreases in the unit tardiness cost p.
The effect of h is more nuanced: we observed the optimal
procurement quantity to be initially decreasing in h and then
increasing in h. The intuition lies in the fact that h has two
opposing effects on the optimal procurement quantity. On
one hand, a higher h results in the firm ordering later, which
increases the optimal procurement quantity. On the other
hand, an increase in h reduces the critical fractile, which
decreases the optimal procurement quantity. At a smaller
h, the latter effect seems to dominate but as h continues to
increase, the former effect dominates with a result that the
optimal procurement quantity being increase in h.

Part (ii) of the above theorem proves that the optimal
expected cost is increasing in the unit cost c, in the holding
cost h, and in the tardiness penalty cost p; is decreasing in the
unit revenue r and in the salvage value s. These directional
results are quite intuitive.

In summary, the firm’s optimal procurement policy is influ-
enced by a number of important factors, notably the forecast
efficiency λ, the delay probability θ , the delay CV, and the
system cost parameters, especially r/c ratio, s/c ratio, and
the unit holding cost h. For typical parameter values, the
sensitivity effect is as expected, e.g., the optimal procure-
ment time is closer to the selling season when the forecast
efficiency increases, when the delay probability decreases, or
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when the unit holding cost increases. Some sensitivity effects
are less intuitive or parameter-value dependent. For example,
the optimal procurement time may increase or decrease in
the delay CV, depending on whether the current delay CV
is low or high. Therefore, a firm should carefully analyze
its system to determine its optimal procurement time. For
the optimal procurement quantity, we note that for typical
parameter values it follows a similar pattern to the optimal
procurement time, with a notable exception of the unit hold-
ing cost, where the optimal procurement quantity can be
increasing or decreasing in h.

6. ROBUSTNESS AND SOME GENERALIZATIONS

In this section, we discuss the robustness of Theorem 1
and, in doing so, illustrate how the order time/forecasting
independence result developed in Section 4 can be general-
ized to alternative model formulations. In what follows we
explore demand forecasting, the tardiness penalty cost, cus-
tomer balking behavior, and time dependent system parame-
ters. We relegate the detailed formulation and corresponding
proofs to Section A3 in the Appendix.

• Tardiness Penalty Cost: The order time/forecasting
independence result holds when the tardiness penalty
cost is assessed not on the expected demand as in (2),
but on the satisfied demand, i.e., E[min{XD , y}|xt ].
It is straightforward to prove (refer Section A3 for
details) that Lemma 2 holds under this alternative
formulation and so does Theorem 1. Furthermore,
one can establish that the independence result holds
when the tardiness penalty p is time dependent,
hence allowing the order time/forecasting indepen-
dence result to be extended to models with a general
nonlinear (in time) tardiness penalty cost.

• Customer Balking Behavior: We have used a tardi-
ness penalty cost in (2) as a proxy for lost goodwill or
demand due to tardiness. We now consider a model in
which customer balking (tardiness induced lost sales)
is directly modeled. Let 0 ≤ α(τ) ≤ 1 denote the
fraction of demand that remains after a delay of length
τ ≥ 0. Then, the demand at time T + τ is α(τ)XD .
This tardiness induced lost sales replaces the tardi-
ness penalty in our base model. Lemma 2 still holds
for this model,10 and therefore, so does Theorem 1.
Refer Section A3 for formulation and further details.

• Demand Forecasting: From the forecasting perspec-
tive, Theorem 1 can be generalized to a forecast-
ing process with autocorrelated successive revisions

10 While it’s reasonable to assume that α(0) = 1 and that α(τ) is
convex decreasing in τ , such assumptions are not necessary for the
separability result of Lemma 2 to hold.

or non-stationary revisions where the �t ’s are non-
identical. In these cases, the expressions for ψµ(t)

and ψσ (t) are more complex, but it is evident from
(4) that the homogeneity property of the optimality
equation still holds, and hence, the Theorem 1. In fact,
we have developed and fully characterized a model in
which the �t ’s are autocorrelated and the analytical
results and insights obtained from this more complex
model are similar (details available upon request).
Note that we also describe and analyze an alternative
demand forecasting model where the effect of suc-
cessive forecast revisions are additive (as opposed to
multiplicative). We prove that under this alternative
model Theorem 1 does not hold. Refer Section A4 for
details.

• Time-Dependent System Parameters. In our base
model, the system parameters were time invariant.
Our model can be extended to allow for a time-
dependent unit procurement cost c, unit salvage value
s, and unit penalty cost p. The analysis of the optimal
procurement time t∗ will be much more complex but
the independence result still holds. Refer Section A3
for details.

We note that there are circumstances under which Lemma
2 does not hold, and hence, the independence result breaks
down. One example is when a parameter, such as the unit
procurement cost c, depends on the forecast realizations of
xt . This unit cost dependence might happen, for example, if
the system depends on certain general economic environment
states and a higher realization of xt is a reflection of higher
demand in the general economy. A second example when the
independence result does not hold is when the procurement
cost is nonlinear in the procurement quantity.

7. CONCLUSIONS

In this article, we investigate a key trade-off that will be
faced by an increasing number of firms as more goods are
sourced from distant suppliers. In particular, we study the
optimal timing-and-quantity problem for a newsvendor-type
firm facing supply and demand risk. The supply risk, i.e.,
lead time uncertainty, motivates the supplier to order ear-
lier. In contrast, the opportunity to reduce its demand risk
through forecast updating motivates the firm to order later.
We study this timing-and-quantity problem in a quite general
setting and establish a number of interesting technical and
managerial results.

We prove an important timing-and-level separation result:
under multiplicative forecast revisions the optimal procure-
ment time is independent of the realization of forecast evo-
lutions but the optimal quantity is not. We characterize the
optimal procurement time and quantity, and analytically
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establish the directional effect of many important supply and
market attributes. Although, one might expect that, all else
being equal, a firm with effective forecast would procure
closer to the selling season (to take advantage of increas-
ing demand-forecast accuracy) than would a firm with no
forecast updating, this is not necessarily true. We prove that
this intuition is correct in the case of a deterministic lead
time. However, in a stochastic-lead time setting, a forecast-
updating firm may procure earlier than the firm that does not.
The reason lies in the interplay of the demand and supply
risk.

We see future research opportunities along a number
of dimensions. One could investigate the multi-component
version of this problem or investigate a single-component
problem with multiple ordering opportunities. In addition, it
would be of interest to consider a risk-averse firm. We hope
that future research, by ourselves and others, will address
these dimensions.

8. PROOFS

PROOF OF LEMMA 1: Let TC(y) = (hA(t) − (r −
c))y + (r − s) E[(y −XD)+|xt ]+pB(t) E[XD|xt ]. One can
show that TC(y) is convex in y, and TC′(y) = hA(t) − (r −
c)+ (r − s)Ft (y|xt ). Setting T C ′(y) = 0 obtains the desired
result. �

PROOF OF LEMMA 2: By Property 1 of the MMFR
process, the demand XD follows a lognormal distribution,
which exhibits the decomposability property. Specifically,
define �̃t = �̂

∏T −1
l=t �l , we have

XD = xt �̂

T −1∏
l=t

�l = xt �̃t . (14)

Substituting (14) into (2), we have

v(t , xt ) = xt min
ỹ≥0

{
cỹ + r E

[
(�̃t − ỹ)+

]
−s E

[
(ỹ − �̃t )

+] + hA(t)ỹ + (pB(t) − r) E[�̃t ]
}

,

where ỹ = y/xt . The lemma statement then follows
directly. �

PROOF OF THEOREM 1: Follow directly from Lemma
2 and (6). �

PROOF OF THEOREM 2: We prove (12) by induction
on t . Analogous to (9) to (11), we have w(T − 2) =
e(ψµ(T −2)+ψσ (T −2)/2)·min{M(T −2), min{M(T −1), M(T )}}.
Suppose w(t) = e(ψµ(t)+ψσ (t)/2) · min{M(t), min{M(t +
1), M(t + 2), . . . , M(T )}}, we need to show that w(t −

1) = e(ψµ(t−1)+ψσ (t−1)/2) · min{M(t − 1), min{M(t), M(t +
1), M(t + 2), . . . , M(T )}}. Analogous to (9), we have

w(t − 1) = min
{̂
v(t − 1), E

[
�t−1 · w(t)

]}
= min

{
v̂(t − 1), E

[
�t−1

] · e(ψµ(t)+ψσ (t)/2)

· min{M(t), min{M(t + 1), M(t + 2), . . . , M(T )}}
}

= min
{
e(ψµ(t−1)+ψσ (t−1)/2) · M(t − 1), eµ+σ 2/2

· e(ψµ(t)+ψσ (t)/2) · min{M(t), M(t + 1), . . . , M(T )}
}

= min
{
e(ψµ(t−1)+ψσ (t−1)/2) · M(t − 1), e(ψµ(t−1)+ψσ (t−1)/2)

· min{M(t), M(t + 1), . . . , M(T )}}
}

= e(ψµ(t−1)+ψσ (t−1)/2) min{M(t − 1),

min{M(t), M(t + 1), . . . , M(T )}}}, (15)

where the second step follows from the induction assumption.
This completes the proof. �

PROOF OF THEOREM 3: (i) For θ = 0, A(t) = (T −
L − t)+ and B(t) = (T − L − t)−. It is straightforward to
show that t∗ ≤ 
T − L�. By (13), v(t) − v(t + 1) > 0 ⇒
t∗ ∈ {�T − L	, 
T − L�}. (ii)(a) Follows from the fact that
sup Ĥ (t) < (p/h) E[XD] ⇒ v(t + 1) − v(t) ≥ 0 for any t

(see Lemma A4). Note that the Ĥ (·) function defined in The-
orem 3 is similar to the H(·) function defined in Lemma
A3 and A4, with a change of variable z = T − L − t .
(b) By Lemma A4, v(·) is minimized at corner solutions
when Ĥ (T − L) > (p/h) E[XD] (or equivalently H(0) >

(p/h) E[XD]). The case of v(·) being minimized at t is trivial
(because the firm does not participate). Hence, the optimal
t∗ ∈ {�T − L	, 
T − L�}. (c) By Lemma A4, if t is not
restricted to decision epochs, then v(·) has exactly one max-
imum and one minimum point. If |T | = 2, then v(τ) must
be the closest point to the minimum. Given the restriction
of decision epochs, t∗ must either equal to τ or equal to the
corner solution I(T − L). �

PROOF OF THEOREM 4: (a) When θ = 0, the supply
lead time is constant and equals to L. Consequently, we have
t∗N ≥ �T − L	 and t∗F ≥ �T − L	. By Lemma A1 (refer
appendix), however, t∗N ≤ 
T − L�. Therefore, we have
t∗N ∈ I(T −L). With forecast updating, we must have t∗F ≥ t∗N
because otherwise the firm can do strictly better by adopting
t∗N in the forecast updating case. (b) When h = 0, we have
t∗N ≤ t∗F because, with no forecast updating, any procurement
time before T − L is optimal. (c) We prove this by an exam-
ple. Assume the delay ω follows a Weibull distribution with
the shape parameter α = 0.85 and expectation E[ω] = 2.
Set unit cost c = 2.1. In addition, we set r = 7, p = 0.7,
s = 2, h = 0.14, L = 2, T = 6, and θ = 0.5. We set
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expected demand equal to 100 and the demand CV equal
to 0.8. Note that α = 0.85 ⇒ G′′(·) ≤ 0. We assume the
decision interval is 0.01. For the no forecast updating case,
by definition in Lemma A3, H(0) = y∗(0) 1−θ

θ
= 331.07.

Since p

h
E[XD] = 500 > H(0) and sup H(z) = 2, 387.56 >

p

h
E[XD], by part (c) of Lemma A4, z∗ = z1. By evaluating

equation (A-24), we obtain z1 = 0.41, and hence, the optimal
order time t∗N = T − L − z1 = 3.59. For the forecast updat-

ing case, consider M(t). For 0 ≤ t < L, k(t) −
√

1
2ψσ (t) is

strictly decreasing in t . Combining with the fact that B(t) is
linear in t , one can verify that B(T ) = 3, B(T − L) = 1,
so that t > T − L cannot be optimal. For t ≤ T − L, note
B(·) is convex increasing in t and limt→−∞ B(·) = 0, and

erf(k(t) −
√

1
2ψσ (t)) is monotonically increasing in t and

limt→−∞ erf(·) = −1. As both functions are bounded, by an
exhaustive numeric search we obtain t∗F = 3.55 < t∗N. �

PROOF OF THEOREM 5: Part (i). By the definition of t∗,
we have v(t∗) ≤ min{v(t∗+1), v(t∗+2), . . . , v(T )}. By (13),
v(t)−v(t+n) is decreasing in p for any n ∈ {1, 2, . . . , T −t}.
It follows that t∗ is non-increasing in p. Part (ii). The theorem
statement can be easily seen from the fact that for any fixed
t , v(t) is non-decreasing in c, h, and p and non-increasing in
r and s. Because t∗ minimizes v(t), the theorem statement
then follows directly. �
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