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ABSTRACT

We consider a manufacturer’s new market entry problem when it already has some
established facility in its existing market. We consider two common market entry strate-
gies: the export strategy and the foreign direct investment (FDI) strategy. In the export
strategy the firm increases the capacity at its existing facility and subsequently allocates
the output to the existing and the new market dynamically, depending on realized market
conditions. The export strategy is a flexible strategy. In the FDI strategy, the firm invests
in a dedicated capacity to serve the new market only. The FDI strategy is a (partially)
dedicated strategy. We study these two strategies from a planning perspective, that is,
how the firm’s strategy choice influences the optimal capacity levels. We find that the
firm’s strategy choice can significantly impact the optimal capacity investment levels.
We prove, for example, that the firm may enter the new market in the export strategy but
not in the FDI strategy, even if the capacity investment cost is identical in the existing
and the new market. In addition, we prove that the firm may invest a strictly higher
capacity level in the export strategy than that in the FDI strategy. We also prove that
new market entry in the FDI strategy may strictly decrease the firm’s supply to its ex-
isting market but this is not so in the export strategy, and hence policy makers should
carefully consider the implications of trade regulations on firms’ market entry choices.
[Submitted: September 20, 2010. Revisions received: March 13, 2011; May 21, 2011.
Accepted: June 8, 2011.]

Subject Areas: Facilities Planning, Market Entry, Resource Flexibility, and
Responsive Pricing.

INTRODUCTION

Consider a manufacturer’s new market entry problem when it already has some es-
tablished facility in its existing market. The product offered in the new market may
require some minor customization but otherwise is similar to the product offered in
the existing market. This is a quite common problem facing both established and
emerging firms: should the firm serve customers in the new market by expanding
its existing facility, or should it invest in a facility that can manufacture locally
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in the new market (Head & Ries, 2004, p. 409)? In the international economics
literature, these two choices are often referred to as export and horizontal foreign
direct investment (FDI), where “horizontal FDI refers to an investment in a for-
eign production facility that is designed to serve customers in the foreign market”
(Helpman, Melitz, & Yeaple, 2004, p. 300).

In this research we adopt the terms export and FDI in a broader sense,
regardless of whether or not the new market is indeed a foreign market. From a
flexibility point of view, because both the existing and the new markets are served
by the existing (and potentially expanded) facility, the export strategy is a flexible
strategy. In contrast, because it establishes a dedicated facility in the new market,
the FDI strategy is a (partially) dedicated strategy. The FDI strategy is partially
dedicated because the firm may still export a fraction of outputs from its existing
facility to complement the FDI investment. Hereafter we use the terms export and
FDI in this broader sense and hence they can also be interpreted as flexible and
dedicated, respectively.

Research Perspective

We study the firm’s new market entry problem primarily from a planning perspec-
tive. In other words, we are interested in the implications of the optimal capacity
levels between the two strategies. Understanding how strategy choices influence
the optimal capacity levels is important for operations managers because one can
use such information for resource planning purposes (e.g., labor, land, inputs,
regulatory conformance, and government incentives).

By understanding the firm’s capacity investment problem from an operational
and planning perspective, this article offers insights that are important to both
practitioners and academicians. For many firms, capacity levels (e.g., market sizes)
have been considered as one of the most important drivers beyond financial metrics.
Higher capacity levels can be valuable to the firm for many different reasons
including, for example, volume advantage (buying power), access to new markets,
advertising scale, and access to regulatory reliefs (tax concessions). The Profit
Impact of Market Strategy database developed by General Electric suggests that
a larger market size brings the benefit of economies of scale, which often leads
to higher profitability. Hence, understanding capacity levels in a firm’s market
entry strategy is no less important than understanding the expected earnings. An
important insight we found in this article is that, under certain conditions, capacity
investment via export strategy may lead to larger market sizes than that via FDI
strategy. This insight is not only valuable for operations managers from a resource
planning perspective, it is also important from a policy maker’s perspective.

Government regulations (e.g., tariffs and subsidies) often influence a firm’s
market entry strategies. This article identifies situations when the export strategy
strictly benefits the firm’s existing market (higher supply and lower market price)
compared to the FDI strategy. Policy makers should therefore consider this factor
(among others) that may positively influence a firm’s market entry strategy. Note
that this article is not intended to be a decision support tool; rather, it attempts to
identify important capacity implications of the firm’s market entry strategies via
stylized models. From a research point of view, we hope this article spurs further
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research in firm’s market entry problem by considering more broad factors such
as trade barriers, taxation, and price restrictions.

Relation to Relevant Literature

In both the export and the FDI strategies, the capacity decision is set before demand
uncertainty is realized, but the firm uses responsive pricing to mitigate the potential
mismatch between supply and demand. Hence, this article is closely related to the
responsive pricing literature. In particular, Bish and Wang (2004) and Chod and
Rudi (2005) study the value of flexible resources under responsive pricing for a
given set of dedicated and flexible resources. However, they do not consider the
choice of selecting flexible versus dedicated resources, and therefore the capacity
consequences of such a strategic choice are not relevant in their research.

Our research is also closely related to the global facility network design
literature, but with important differences. Kulkarni, Magazine, and Raturi (2004),
Chakravarty (2005), and Lu and Van Mieghem (2009), for example, study the
optimal configuration of facility networks under exogenous price and they do
not consider the impact of the firm’s existing facility in market entry choices.
Kazaz, Dada, and Moskowitz (2005) consider responsive pricing but their focus
is on the impact of exchange uncertainty on production and allocation hedging
for a given facility network. Dong, Kouvelis, and Su (2010) study the optimal
configuration of facility networks under responsive pricing. They derive boundary
conditions under which a complete network or centralized network is optimal and
they explore the impact of exchange rate versus demand uncertainty on the optimal
structure of the facility networks. Because both the complete and centralized
network configurations in Dong et al. (2010) are essentially flexible strategies, they
do not explore the market entry choice between flexible and dedicated strategies
when the firm already has an existing facility.

In this article, we find that the optimal capacity investment levels are sig-
nificantly impacted by the firm’s strategy choice. We prove, for example, that
under certain conditions the firm will expand into the new market under the export
strategy only, even if the capacity investment cost in both markets is identical. We
also prove that, even if the firm in both strategies expands to the new market and
the capacity cost is identical, the firm using the export strategy may still invest in
strictly higher capacity levels than the firm using the FDI strategy. This is somewhat
counterintuitive because the export strategy has a demand-risk pooling benefit that
tends to reduce the optimal capacity levels. The fact that the firm in the export
strategy invests in higher capacity expansions does not suggest that the export
strategy is less efficient than the FDI strategy; on the contrary, it suggests that the
export strategy becomes more valuable to the firm under responsive pricing.

It is worth pointing out that we are not the first to note that the export (flexible)
strategy may invest in higher capacity levels. In the inventory literature, several
researchers have investigated the implications of the inventory levels between
centralized and dedicated inventory systems. Eppen (1979) implicitly established
that the centralized system has a lower (higher) inventory level than the dedicated
system if the newsvendor critical fractile is greater (less) than 0.5. Gerchak and
Mossman (1992) observed through a numerical example that the inventory level in
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the centralized system can be higher than that in the dedicated system when demand
is exponentially distributed. Recently, Yang and Schrage (2007) systematically
studied the conditions under which centralization may lead to increased inventory
levels and they found that such an inventory “anomaly” could occur for any
right skewed demand distribution. All the above mentioned research considers
exogenous pricing only. More importantly, in all of the above mentioned research,
the inventory anomaly will disappear if demand in one of the two markets exhibits
no uncertainty. In contrast, we prove that with responsive pricing, the firm using
export strategy may invest in higher capacity levels even if (i) there is no uncertainty
in one of the two markets and (ii) demand is not right skewed.

This article also studies the effect of new market entry on the firm’s existing
market. We show that after entering into the new market the firm in the FDI
strategy may supply strictly less (in expectation) to its existing market, but this is
not so in the export strategy. Policy makers may therefore want to examine trade
policies that could encourage a firm to engage in export strategy as opposed to the
FDI strategy in expanding into the new market. The above observation may not
hold, however, if the firm faces stringent price regulations. Price regulation is an
important concern for multinational firms. For example, Horst (1971) examined
how global trade barriers influenced a multinational firm’s pricing strategies and
found that the firm’s optimal pricing strategy hinged upon whether the firm could
price-discriminate between the two markets.

The rest of this article is organized as follows. We describe the model and
provide preliminary analysis in the following section. Next, we explore the im-
plications of the optimal capacity investments between the export and the FDI
strategy. We then discuss several important limitations and extensions, and we
conclude in the final section. All proofs are contained in the Appendix.

MODEL AND PRELIMINARIES

Consider a firm that serves its existing market (market 0) with an existing facility
with capacity K0. We consider two strategies the firm may use to serve a new market
(market 1): the export and the FDI strategy. In the export strategy, the firm invests
additional capacity Kf

0 in market 0, such that after the market demand is realized
the combined output from K0 + Kf

0 can be flexibly allocated between market 0
and market 1. Each unit supplied to market 1 may incur an additional per-unit
cost δ, which can include additional transportation, tariff, and customization cost
associated with the new market. The export strategy is a (flexible) postponement
strategy that delays the allocation decision. In contrast, in the FDI strategy, the
firm installs a separate facility with capacity Kd

1 exclusively for market 1. The firm
may, however, complement its FDI investment by flexibly allocating a fraction of
the output from its existing capacity to the new market. Hence, the FDI strategy
is a partially dedicated strategy with early commitment to the new market. In both
the export and the FDI strategy, we ignore fixed capacity setup cost: for the export
strategy, capacity adjustments in the existing market is often incremental, whereas
for the FDI strategy any fixed capacity cost in the new market only makes the
export strategy (all else equal) more attractive.
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Market demand is uncertain and sensitive to price. In both export and FDI
strategies, the firm makes capacity and production decisions before market uncer-
tainty is resolved, but makes its pricing (and selling quantity) decision after the
market uncertainty is resolved. In essence, the firm operates a “push” production
process and a “pull” pricing and quantity allocation process. Let pi(qi, εi) denote
the firm’s inverse demand function in market i, where qi is the selling quantity in
market i and εi captures realized market uncertainty. Intuitively, one may regard εi

as an aggregate indicator of random factors (e.g., uncertain customer preferences)
that influence market price. We assume that market uncertainties are independent,
and that the distribution function of εi exists and is given by Gi(·).
Assumption 1: Demand function p−1

i (·, εi) is a (PF2) Polya frequency function
of order 2.

Condition PF2 is satisfied by many common distributions such as normal,
exponential, gamma, and Weibull distributions. All logconcave functions are also
PF2 (Efron, 1965). Define Ri(qi, εi) = pi(qi, εi)qi and MRi(qi, εi) = ∂Ri(qi, εi)/∂qi

as the firm’s revenue and marginal revenue function, respectively.

Assumption 2: ∂MRi(qi, εi)/∂εi > 0.

Assumption 2 implies that the firm’s marginal revenue increases in εi, which
is quite reasonable.

Summary of Notation

f , d: Superscripts (subscripts) that denote export (flexible) and FDI (dedi-
cated) strategy.

Ki: Production capacity in market i, i = 0, 1.

c0, cf
0, cd

1: Unit production (including capacity investment) cost at the firm’s ex-
isting facility K0, flexible capacity Kf

0, and dedicated capacity Kd
1,

respectively.

Gi(·): Distribution function of εi , i = 0, 1.

qij: Amount of production in market i supplied to market j, i, j = 0, 1.

qi: Total quantity available in market i, i.e., qi = ∑
j=0,1qji, i = 0, 1.

δ: Unit cost incurred for production supplied from the existing market
(market 0) to the new market (market 1). Such costs may include ad-
ditional transportation cost, tariff, and customization cost. For brevity,
hereafter we refer to δ as exporting cost.

As a convention, we use �ε = (ε1, ε2) to denote the vector of the random market
uncertainty. We are now in a position to formulate the firm’s two-stage decision
problem.

Export Strategy

The firm’s first stage expected profit function is

Stage 0: Vf

(
K

f
0 |K0

) = −c0K0 − c
f
0 K

f
0 + E�ε�∗

f

(
K

f
0 |K0, �ε), (1)
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where the second stage optimal revenue function is

Stage 1: �∗
f

(
K

f
0 |K0, �ε) = max

qij ≥0
p0(q0, ε0)q0 + p1(q1, ε1)q1 − δq01 (2)

subject to: q0 = q00, q1 = q01, q00 + q01 ≤ K0 + K
f
0 . (3)

FDI Strategy

The firm’s first stage expected profit function is

Stage 0: Vd

(
Kd

1 |K0
) = −c0K0 − cd

1Kd
1 + E�ε�∗

d

(
Kd

1 |K0, �ε), (4)

where the second stage optimal revenue function is

Stage 1: �∗
d

(
Kd

1 |K0, �ε) = max
qij ≥0

p0(q0, ε0)q0 + p1(q1, ε1)q1 − δq01 (5)

subject to: q0 = q00, q1 = q11 + q01, q00 + q01 ≤ K0,

q11 ≤ Kd
1 . (6)

General Properties

In both strategies, the relevant constraints, Equations (3) and (6), each form a
convex set. Hence, we can characterize the structure of the first stage objective
functions by exploiting the special properties of the mathematical programs of
Equations (2) and (5).

Proposition 1: Vf (K
f
0 | K0) and Vd(Kd

1 | K0) are concave in Kf
0 and Kd

1, respectively.

Because constraints (3) and (6) each form a convex set, we can use the
Lagrangian approach to characterize the optimal Kf

0 and Kd
1 more explicitly. The

Lagrangian function for the export strategy is

Lf

(
K

f
0 |K0, λf

) = p0(q0, ε0)q0 + p1(q1, ε1)q1

− δq01 − λf

(
q0 + q1 − K0 − K

f
0

)
, (7)

where λf is the Lagrangian multiplier. A direct analysis of Equation (7) parti-
tions the demand space into different regions (Figure 1(a)). The analysis for the
FDI strategy is similar and the partitions of the demand space are illustrated in
Figure 1(b).

In Figure 1(a), region �2 = �2.1 ∪ �2.2 represents low demand realiza-
tions in both markets such that the export strategy is able to fill demand in both
markets; in �2.1 it is not profitable to export to the new market (due to tranship-
ment/customization cost), whereas in �2.2 it is profitable to do so because the
new market is sufficiently large. Region �3 = �3.1 ∪ �3.2 ∪ �3.3 represents high
demand realizations in at least one market such that the export strategy will need
to balance the existing and the new market demand. In particular, the firm exports
100% in �3.1, exports nothing in �3.3, and serves both existing and new market in
�3.2.

In Figure 1(b), the demand regions can be similarly interpreted. There are two
additional regions �0 and �1 that are unique to the FDI strategy. In both regions
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Figure 1: A schematic of demand space partitions for export and FDI strategies.

the firm does not complement its FDI investment with exporting, because in �0

demand in each market can be satisfied by their respective resources, whereas in
�1 the demand in the existing market is so high it is not profitable to export. By
Lemma 1 and the above analysis in demand space partitions, we have the following
proposition.

Proposition 2:
(a)The optimal Kf

0 satisfies

3∑
i=1

E�3.i

[
∂�∗

f (Kf
0 |K0, �ε)

∂K
f
0

]
= c

f
0 − λf , (8)

where λf · Kf
0 = 0, and

∂�∗
f

(
K

f
0 |K0, �ε)

∂K
f
0

=

⎧⎪⎪⎨⎪⎪⎩
MR1

(
K0 + K

f
0 , ε1

) − δ, �3.1;

MR0
(
K0 + K

f
0 − q∗

01, ε0
)
, �3.2;

MR0
(
K0 + K

f
0 , ε0

)
, �3.3.

(b)The optimal Kd
1 satisfies

3∑
i=2

i∑
j=1

E�i.j

[
∂�∗

d

(
Kd

1 |K0, �ε)
∂Kd

1

]
= cd

1 − λd, (9)

where λd · Kd
1 = 0, and

∂�∗
d

(
Kd

1 |K0, �ε)
∂Kd

1

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
MR1

(
Kd

1 , ε1
)
, �2.1 ∪ �3.3;

MR1
(
Kd

1 + q∗
01, ε1

)
, �2.2;

MR1
(
K0 + Kd

1 , ε1
)
, �3.1;

MR0
(
K0 − q∗

01, ε0
) + δ, �3.2.
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Proposition 2 characterizes the optimal capacity investment levels under the
export and FDI market entry strategies. Notice that the L.H.S. of Equations (8)
and (9) are simply the expected marginal revenue of Kf

0 and Kd
1, respectively. It is

therefore intuitive that at optimality, the (interior) capacity levels are such that the
marginal revenue equals marginal cost.

OPTIMAL CAPACITY INVESTMENT IN EXPORT
AND FDI STRATEGIES

In this section, we first study how the firm’s preference to the export and FDI
strategy is influenced by market and demand characteristics, and then contrast the
optimal capacity investments between these two market entry strategies.

Strategy Preferences

Because the impact of production cost cf
0 and cd

1 is straightforward (i.e., increasing
cf

0 makes FDI strategy more attractive whereas increasing cd
1 makes export strategy

more attractive), in what follows we focus on two important market characteristics:
the exporting cost δ and the existing capacity K0.

Intuition suggests that, all else equal, an increase in the exporting cost δ

makes the FDI strategy more attractive. One may therefore conjecture that, with
a sufficiently high δ, the firm would prefer FDI to export for any exporting cost
δ ≥ δ. This intuition is largely correct, but with some important nuances. Define
V∗

f = Vf (K
f ∗
0 |K0) and V∗

d = Vd(Kd∗
1 |K0).

Proposition 3: (a) If δ ≤ cd
1 − cf

0, then V∗
f − V∗

d ≥ 0. (b) ∂(V∗
f − V∗

d)/∂δ ≤ 0. (c)
It is possible that V∗

f − V∗
d > 0 even if δ = ∞.

Proposition 3 confirms one’s intuition that the firm always prefers export
strategy when the exporting cost δ is sufficiently low (part (a)), and that a higher
exporting cost δ increases the attractiveness of the FDI strategy (part (b)). By part
(a), if capacity investment cost is identical (i.e., cf

0 = cd
1) and the exporting cost δ

equals zero, then the firm always prefers export strategy. As the exporting cost δ

increases, the attractiveness of the FDI strategy increases. Part(c) tells us, however,
that the firm’s preference to export strategy may not switch even at δ = ∞, which
is a degenerate case where the firm invests in Kf

0 > 0 but never exports because
δ = ∞. A natural question arises: when will there exist a δ such that the firm
prefers export strategy for any δ ≤ δ, and prefers FDI for δ > δ? Note that by part
(b) of Proposition 3, if such δ exists, it must be unique.

Corollary 1: Define � = {ε0 : MR0(K0, ε0) ≥ 0} for any given K0. Let K0

be the unique solution to E�[MR0(K0, ε0)] = c0. Similarly, define 	 = {ε1 :
MR1(Kd

1 , ε1) ≥ 0} for any given Kd
1. If (i) c0 = cf

0 = cd
1, (ii) K0 = K0, and (iii)

E	[MR1(0, ε1)] ≥ cd
1 , then there exists a unique δ < ∞ such that V∗

f ≥ V∗
d for any

δ ≤ δ and V∗
f < V∗

d for any δ > δ.
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The above corollary provides a sufficient condition for the existence of a
switchover exporting cost δ. In particular, if capacity investment costs are similar
(condition (i)), the firm has sufficient existing capacity (condition (ii)), and the
new market is not too small (condition (iii)), then there exists a unique boundary
exporting cost δ, such that the firm prefers export strategy for δ ≤ δ and prefers
FDI strategy for δ > δ.

We now turn our attention to the effect of the firm’s existing capacity K0 on
its strategy preferences. One important question that is of managerial interest is
whether or not a larger existing capacity favors export strategy. Intuition offers two
contrasting views. On the one hand, a larger existing capacity translates into excess
capacity and therefore the firm should favor export strategy. On the other hand,
a larger existing capacity renders declining returns for any further investment
in Kf

0 and hence the firm is better off choosing FDI investment. The following
proposition suggests that the effect of the firm’s existing capacity K0 on firm’s
strategy preference is somewhat more subtle.

Proposition 4: (a) ∂Kf ∗
0 /∂K0 ≤ 0. (b) ∂Kd∗

1 /∂K0 ≤ 0. (c) ∂V∗
f /∂K0 = −c0 +

cf
0. (d) ∂V∗

d/∂K0 = −c0 + cd
1 + ρ, where ρ = E�1∪�3.3 MR0(K0, ε0) −

E�2.1∪�3.3 MR1(Kd
1 , ε1) − Pr(�2.2 ∪ �3.1 ∪ �3.2)δ.

Parts (a) and (b) of the above proposition tell us that, as one might expect,
the firm’s existing capacity is a substitute for new capacity investments, either in
the export strategy or the FDI strategy. In other words, higher existing capacity
levels result in a lower marginal value of Kf

0 and Kd
1, and hence reduce the firm’s

incentive to invest in new capacities. The effect of existing capacity on the firm’s
strategy preference, however, is less clear. Part (c) tells us that the effect of K0

on the optimal expected profit in the export strategy depends only on the relative
costs of c0 and cf

0. In particular, the firm benefits from a larger existing capacity
if c0 < cf

0 but not if c0 ≥ cf
0. In fact, if c0 > cf

0, the firm is better off having less
existing capacity, which often is the case when newer technology, for example,
affords lower production costs. In contrast, part (d) says that the effect of K0 on
the FDI strategy depends not only on the relative costs of c0 and cd

1, but also on
the market characteristics summarized by ρ. Because ρ can be either negative or
positive, the firm may prefer a higher existing capacity K0 even if c0 > cd

1 and
vice versa. As a result, the effect of K0 on the firm’s preference toward export or
FDI strategy can be ambiguous, even if c0 = cf

0 = cd
1. Despite this difficulty, the

following proposition sheds further insights on the effect of K0.

Proposition 5: If c0 = cf
0, there exists a unique K̃0 > K0 such that ∂(V∗

d −
V∗

f )/∂K0 ≥ 0 for any K0 ≤ K̃0, and ∂(V∗
d − V∗

f )/∂K0 < 0 for any K0 > K̃0.

Note that K0 (defined in Corollary 1) is the optimal capacity level if the firm
serves its existing market only. Proposition 5 establishes a unique threshold capac-
ity level K̃0 such that the FDI strategy becomes more attractive as K0 increases, but
only up to the threshold level K̃0. Once the firm’s existing capacity exceeds K̃0,



116 Capacity Investment Under Responsive Pricing

the FDI strategy becomes less attractive as K0 continues to increase. The intuition
for this nonmonotonic behavior can be partially explained by the interplay of the
marginal value of the existing capacity and of the dedicated capacity. This was
discussed in the paragraph preceding Proposition 4.

Capacity Implications

Having partially characterized the effect of market characteristics on the firm’s
strategy preferences, we now focus on the capacity implications of the firm’s
strategy choice. One might expect that the optimal capacity investment in the
export strategy is less than that in the FDI strategy due to the demand-risk pooling
benefit embedded in the export strategy. This intuition is correct, for example,
when market price is exogenous and the critical newsvendor fractile is greater than
0.5 (Eppen, 1979). With responsive pricing, however, it is unclear whether or not
the above intuition will continue to hold. The following proposition proves that a
firm may invest in the export strategy a capacity level that is strictly greater than
that in the FDI strategy.

Proposition 6: Suppose cf
0 ≤ c0 and K0 = K0. (a) If (i) E[ε1] ≤ cd

1 and (ii) ∃ε1,
such that ∀ε1 > ε1 MR1(0, ε1) > δ, then all else equal V∗

f > V∗
d, Kf ∗

0 > 0, and Kd∗
1

= 0. (b) If ∃ε1, such that ∀ε1 > ε1 MR1(0, ε1) > δ, then all else equal there exists
some cd

1 > cd
1 such that if cd

1 < E[ε1] ≤ cd
1 then Kf ∗

0 > Kd∗
1 > 0.

First focus on part (a) of the above proposition. In part (a), condition (i)
guarantees that the firm invests no positive capacity in the new market under the
FDI strategy, and condition (ii) guarantees that it is profitable to export a fraction
of output to the new market with some positive probability. Note that conditions
(i) and (ii) are easily satisfied by any distribution that has support on R+.

If we loosely interpret E[ε1] as a proxy of the expected “maximum will-
ingness to pay” of the new market, part (a) of Proposition 6 suggests that if the
willingness to pay in the new market is small but the variability is high, all else
equal the firm will expand into this new market via export strategy only. What
makes this result somewhat surprising is that it holds even when c0 = cf

0 = cd
1 (so

cf
0 + δ > c1

d); in other words, it is more costly to export one unit to the new market
than it is when using the FDI strategy.

It is worth pointing out that the opposite may happen if market price is
exogenous (e.g., Proposition 13 in the Appendix). As a numerical example, if
price is identical at p0 = p1 = 4, demand for each market is uniformly distributed
between 0 and 20, δ = 1, cf

0 = cd
1 = 2 and K0 = 18, then Kd∗

1 = 2.1388 > Kf ∗
0 =

0. The reason for such opposite behavior is fairly straightforward: with identical
and exogenous market price, the contribution margin in the FDI strategy is greater
than that in the export strategy.

The fact that the export strategy invests a strictly higher capacity than that
in the (degenerate) FDI strategy suggests that the value of the export strategy
is enhanced by responsive pricing. Note that the term “value” used here and
subsequently refers to the fact that the export strategy invests in higher capacity
and thus is more valuable to the market place. Part of the intuition is as follows.
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With responsive pricing, it is profitable for the firm in the FDI strategy to serve
market 1 when ε1 is high but not when ε1 is low. Because E[ε1] is relatively low,
the upside gain when realized ε1 is high cannot offset the downside loss when
realized ε1 is low, with the result that Kd∗

1 = 0; this means the firm invests no
capacity in market 1 under the FDI strategy. In contrast, the firm in the export
strategy can mitigate its downside loss by shifting some of its output to market 0
when realized ε1 is low but ε0 is moderate to high, and vice versa. This limited
loss exposure coupled with potential upside gain creates an option value for the
firm to make higher capacity investment in the export strategy.

Part (b) of Proposition 6 extends the result in part (a) by telling us that the
firm can invest a strictly higher capacity using the export strategy than it would
when using the FDI strategy, even if the firm also expands into the new market
using the FDI strategy. The intuition is similar to that explained above, with the
exception that it is marginally profitable for the firm using the FDI strategy to
invest a positive capacity in market 1. The firm, however, continues to invest a
strictly higher capacity in the export strategy, because, again, the potential upside
gain more than offsets the limited downside loss.

Proposition 6 suggests that the option value created by responsive pricing
dominates the demand-risk pooling benefit inherent in the export strategy. Because
the demand-risk pooling benefit tends to increase if the potential of the new market
grows, one might suspect that the firm may invest less capacity in the export
strategy than it would for the FDI strategy if ε1 becomes sufficiently large. In what
follows, we investigate the effect of market uncertainty ε1 on the firm’s capacity
investment and strategy preferences.

Effect of New Market Uncertainty

Definition 1: A random variable εa
1 is stochastically larger than εb

1, i.e., εa
1 ≥st εb

1,
if Fa(x) ≤ Fb(x) for all x, where Fa(·) and Fb(·) are distribution functions of εa

1 and
εb

1, respectively.

Using the above definition, then, a stochastically larger ε1 implies a higher
E[ε1]. Recall that the firm’s marginal revenue increases in ε1 (Assumption 2);
one therefore expects that the firm’s optimal expected profit would increase as ε1

becomes stochastically larger. It is unclear, however, whether or not a stochastically
larger ε1 makes the FDI strategy or the export strategy more attractive.

Proposition 7: (a) εa
1 ≥st εb

1 ⇒ V ∗
f (εa

1) ≥ V ∗
f (εb

1). (b) εa
1 ≥st εb

1 ⇒ V ∗
d (εa

1) ≥
V ∗

d (εb
1). (c) If Kf ∗

0 ≤ Kd∗
1 then εa

1 ≥st εb
1 ⇒ V ∗

f (εa
1) − V ∗

d (εa
1) ≤ V ∗

f (εb
1) − V ∗

d (εb
1).

The above proposition confirms that the firm benefits from a stochastically
larger new market, regardless of whether the firm adopts the export or the FDI
strategy. If in addition, the firm’s current capacity investment in the FDI strategy is
at least as large as what the firm would have invested in the export strategy, then the
FDI strategy becomes more attractive as the new market becomes stochastically
larger. In other words, if the firm already invests in a higher dedicated capacity
in the new market, then any stochastic increase in ε1 makes the FDI strategy
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Figure 2: An illustration of stochastically larger ε1 under additive/multiplicative
uncertainty.
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Note: Figure 2 was obtained by setting εi ∼ N (μi, σi ), c0 = cf
0 = cd

1 = 2, K0 = 4, and δ = 1. Part (a,c) was
obtained by setting pi = εi − qi, where μ0 = 10, cv0 = σ 0/μ0 = 0.3, μ1 varies from 0 to 6, and cv1 = 0.5.
Part (b,d) was obtained by setting pi = (ai − qi)εi, where a0 = 10, μ0 = 1, cv0 = 0.3, a1 = 1, μ1 varies
from 0 to 6, and cv1 = 0.5.

more attractive. Part of the intuition is as follows. As the new market becomes
stochastically larger, the increased exporting cost begins to offset the risk pooling
benefit inherent in the export strategy, with a result that the FDI strategy becomes
more attractive. We note, however, that the reverse is in general not true; if the
firm invests in a lower dedicated capacity in the new market, then a stochastic
increase in market uncertainty does not necessarily make the export strategy more
attractive. Figure 2(a) illustrates that both Kf ∗

0 and Kd∗
1 increase as ε1 becomes

stochastically larger. As predicated by Proposition 7(c), the FDI strategy becomes
more attractive as Kd∗

1 becomes greater than Kf ∗
0 (Figure 2(c)).

Having partially characterized the effect of stochastic larger market uncer-
tainty on the firm’s optimal expected profit in Proposition 7, we now turn our
attention to its effect on the optimal capacity investment levels.

Proposition 8: (a) εa
1 ≥st εb

1 ⇒ K
f ∗
0 (εa

1) ≥ K
f ∗
0 (εb

1). (b) εa
1 ≥st εb

1 ⇒ Kd∗
1 (εa

1) ≥
Kd∗

1 (εb
1).
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The above proposition tells us that, as one might expect, the optimal capacity
investment level increases as the new market uncertainty becomes stochastically
larger. A stochastic increase in ε1 makes the new market more attractive, and
therefore the firm invests in higher capacity levels regardless of whether it adopts
an export or FDI strategy. A more interesting question remains: how does stochastic
increase in ε1 impact the relative capacity investment levels between the export and
FDI strategies? First we distinguish between additive and multiplicative market
uncertainties.

Definition 2: (a) The inverse demand function is additive if pi(qi, εi) = pi(qi) +
εi, i = 0, 1. (b) The inverse demand function is multiplicative if pi(qi, εi) = pi(qi) ·
εi, i = 0, 1.

In an additive inverse demand function, quantity affects price levels but not
variances, whereas in a multiplicative inverse demand function quantity affects
price variances but not the coefficient of variations. For notational ease, in what
follows we use MR′

i(x, εi) to denote ∂MRi(x, εi)/∂x. Define

�f = E�3.1

[
MR1

(
K0 + K

f
0 , 1

)] + E�3.2

[
MR1

(
q∗

01, 1
) · ηf

]
,

�′
f = E�3.1

[
MR′

1

(
K0 + K

f
0 , ε1

)] + E�3.2

[
MR′

1(q∗
01, ε1) · ηf

]
+ E�3.3

[
MR′

0

(
K0 + K

f
0 , ε0

)]
,

�d = E�2.1∪�3.3

[
MR1

(
Kd

1 , 1
)] + E�3.1

[
MR1

(
K0 + Kd

1 , 1
)]

+ E�3.2

[
MR1

(
Kd

1 + q∗
01, 1

) · ηd
]
,

�′
d = E�2.1∪�3.3

[
MR′

1

(
Kd

1 , ε1
)] + E�3.1

[
MR′

1

(
K0 + Kd

1 , ε1
)]

+ E�3.2

[
MR′

1

(
Kd

1 + q∗
01, ε1

) · ηd
]
,

where ηf = 1/[1 + MR′
1(q∗

01, ε1)/MR′
0(K0 + K

f
0 − q∗

01, ε0)], and ηd = 1/[1 +
MR′

1(Kd
1 + q∗

01, ε1)/MR′
0(K0 − q∗

01, ε0)].

Corollary 2: (a) If the inverse demand function is additive and �′
f ≤ �d

′,
then εa

1 ≥st εb
1 ⇒ K

f ∗
0 (εa

1) − Kd∗
1 (εa

1) ≤ K
f ∗
0 (εb

1) − Kd∗
1 (εb

1). (b) If the inverse de-
mand function is multiplicative and �f /�′

f ≥ �d/�′
d, then εa

1 ≥st εb
1 ⇒ K

f ∗
0 (εa

1) −
Kd∗

1 (εa
1) ≤ K

f ∗
0 (εb

1) − Kd∗
1 (εb

1).

Depending on whether the market uncertainty is additive or multiplicative, its
stochastic effect on the firm’s investment levels is somewhat different. In part (a),
the firm is more likely to invest in higher capacity in the FDI strategy if �′

f ≤ �d
′,

which is more likely to hold if the firm already invests in a higher capacity level
in the FDI strategy than for the export strategy. This is consistent with our earlier
observations on the profit implications in Proposition 7, that a stochastic increase
in new market uncertainty benefits the FDI strategy more if the firm already invests
in higher capacities in the FDI strategy than it does in the export strategy. In part
(b), the condition is more nuanced when demand uncertainty is multiplicative.
In particular, both �f and the absolute value of �′

f decrease as Kf
0 increases,

and hence the ratio of �f /�′
f cannot be directly linked with the magnitude of
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capacity levels. Nevertheless, our numerical observations suggest that the effect
is somewhat similar to that in the additive case; see Figures 2(b) and (d) for an
illustration.

While Corollary 2 partially characterizes the relative capacity impact, the
conditions defined are not easily interpreted (although numerical evaluation is
straightforward). To further improve insights into the capacity implications, the
following remark provides an asymptotic characterization of the effect of stochas-
tically larger new market.

Remark 1: As the new market becomes sufficiently large (in the stochastic sense),
εa

1 �st εb
1 ⇒ K

f ∗
0 (εa

1) − Kd∗
1 (εa

1) ≤ K
f ∗
0 (εb

1) − Kd∗
1 (εb

1) if (a) the inverse demand
function is additive and Kf ∗

0 < Kd∗
1 in the first place, or (b) the inverse demand

function is multiplicative, linear, and Kf ∗
0 > Kd∗

1 in the first place.

By Remark 1 and Proposition 6, if there exists a finite ε1 such that Kf ∗
0 ≤

Kd∗
1 for ε1 ≥st ε1, then this ε1 is unique, and Kf ∗

0 > Kd∗
1 for any ε1 <st ε1. In other

words, the export strategy invests in higher capacity than the FDI strategy when ε1

is small, and if the optimal capacity investment levels between these two strategies
ever cross, they cross only once as ε1 becomes stochastically larger.

In summary, the above analysis tells us that, as ε1 becomes stochastically
larger, the firm may indeed invest less capacity in the export strategy than it would
in the FDI strategy. We note that if the inverse demand function is linear, there
is no uncertainty in the existing market, and that if the new market uncertainty is
uniformly distributed, then one can completely characterize the unique ε1 such that
ε1 ≤st ε1 ⇒ K

f ∗
0 ≥ Kd∗

1 and ε1 >st ε1 ⇒ K
f ∗
0 < Kd∗

1 . It is somewhat surprising
that a demand-risk pooling benefit in the export strategy continues to exist even
if one market does not exhibit any demand uncertainty. This phenomenon cannot
occur if (i) price is exogenous and (ii) demand in one market does not exhibit
uncertainty; in this case the optimal capacity investment would be identical for
the export and the FDI strategies. Eppen (1979), for example, establishes that with
exogenous price a flexible (centralized) system offers no demand-risk pooling
benefit when demand in one market exhibits no uncertainty (Eppen, 1979, p. 500,
where substituting N = 2 and σ 1 = 0 into Equation (14) recovers Equation (12)).

Definition 3: A random variable εa
1 is stochastically more variable than εb

1, i.e.,
εa

1 ≥ssd εb
1, if E[εa

1] = E[εb
1] and

∫
x
0Fa(y) dy ≤ ∫

x
0Fb(y) dy for all x, where Fa(·)

and Fb(·) are distribution functions of εa
1 and εb

1, respectively.

Using the above definition, a stochastically more variable ε1 implies a higher
variance (Gerchak & Mossman, 1992; Xu, Chen, & Xu, 2010). It is well known
in the classical newsvendor model that increasing market variance may result in
higher or lower capacity investments, depending on whether the critical fractile is
greater or less than 0.5. With responsive pricing, then, the relation between market
variance and capacity investment in general cannot be unambiguously determined.
Nevertheless, we can leverage some existing results in the literature to partially
characterize the effect of a stochastically more variable ε1.
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Figure 3: An illustration of more variable ε1 under additive/multiplicative uncer-
tainty.

Note: Figure 3 was obtained using similar parameters as that in Figure 2, except that we fix μ0 = 10, cv0 =
0.3, μ1 = 5, and vary cv1 as illustrated.

Proposition 9: (a) Suppose pi(qi, εi) is linear in qi and additive in εi. If ε1

has support on R+ and E[ε1] < cd
1 , then εa

1 ≥ssd εb
1 ⇒ K

f ∗
0 (εa

1) − Kd∗
1 (εa

1) ≥
K

f ∗
0 (εb

1) − Kd∗
1 (εb

1). (b) [Proposition 6, Dong et al. (2010).] Suppose pi(qi, εi)
is multiplicative in εi, then εa

1 ≥ssd εb
1 ⇒ V ∗

f (εa
1) ≥ V ∗

f (εb
1), V ∗

d (εa
1) ≥ V ∗

d (εb
1).

In contrast to the stochastically larger ε1, Proposition 9(a) tells us that as the
new market becomes stochastically more variable, the firm can in fact invest more
in the export strategy than that in the FDI strategy. This suggests that as the new
market becomes more uncertain, the export strategy becomes a “safer” investment
strategy as compared with the FDI strategy. This is in stark contrast with the case
of stochastically larger new market: a stochastically larger new market implies that
the new market becomes fundamentally more attractive, whereas a stochastically
more variable new market implies that the new market becomes fundamentally
more risky. Part (b) of Proposition 9 tells us that the option value embedded in
both strategies increases as the new market becomes more variable (Figure 3).

It is worth pointing out that the firm’s optimal FDI investment K∗
d can in fact

decrease as the new market becomes stochastically more variable (Figure 3(b)).
The fact that K∗

d can decrease does not contradict Lemma 4 in Dong et al. (2010)
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because here the FDI strategy is a partially dedicated strategy whereas Lemma 4
pertains to pure dedicated strategy only.

We now turn our attention to a question of practical importance: how does
capacity investment for export to the new market (market 1) affect the expected
supply to the existing market (market 0)? It is not obvious a priori whether the
expected supply to the existing market will change after the firm’s entry into the
new market.

Proposition 10: Suppose K0 ≤ K0, where K0 is defined in Corollary 1. (a)
All else equal the expected supply to the existing market decreases as the firm
enters new market via FDI strategy. (b) All else equal the expected supply to
the existing market does not decrease as the firm enters a new market via export
strategy.

Proposition 10 tells us that expanding to a new stochastic market results in
the firm in the FDI strategy supplying less (in expectation) to its existing market,
but this is not so in the export strategy. This result holds regardless of whether
the firm’s optimal capacity investment Kf ∗

1 is higher or lower than Kd∗
0 . From a

policy point of view, then, the FDI strategy can have a negative impact on the
firm’s existing market (less expected supply and higher expected price), whereas
the export strategy does not exhibit such negative characteristics. Hence, trade
policies that influence the firm’s preference toward export versus FDI strategies
should be carefully weighed such that the existing market is not inadvertently
impacted by firms’ entry into new markets.

EXTENSIONS

In this section, we consider several extensions to our base model: price setting with
residual uncertainty, dependent market prices, and multiple periods. We examine
each of the extensions separately.

Price Setting with Residual Uncertainty

Let εi = ωi + zi , where ωi is the part of the uncertainty that is resolved before
price (and allocation quantity) is set, and zi is the residual uncertainty after price is
set. In addition, let σ 2

εi
and σ 2

zi
denote the variance of εi and zi , respectively. Define

ρi = σ 2
zi
/σ 2

εi
, the fraction of market uncertainty that is resolved before price is set.

A lower ρ i, then, is associated with a lower residual uncertainty.
Let Fi(zi) denote the distribution of zi . Also, let di(pi, εi) denote the demand

function in market i. The firm’s second-stage optimal revenue function in export
strategy can be rewritten as

Stage 1: �∗
f

(
K

f
0 |K0, �ω) = max

qij ≥0,pi≥0
p0Ez0 [s0] + p1Ez1 [s1] − δq01 (10)

subject to: q00 + q01 ≤ K0 + K
f
0 , q11 = 0, (11)

where Ezi
[si] = ∫

zi≤zi
di(pi, ωi + zi)dFi(zi) + di(pi, ωi + zi)F i(zi), z0 satis-

fies q00 = d0(p0, ω0 + z0), and z1 satisfies q01 + q11 = d1(p1, ω1 + z1). In
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Equation (10) we use si to denote the sales in market i, i = 1, 2, respectively.
Note that the FDI strategy can be similarly analyzed.

The joint pricing and quantity decision described in Equation (10) above is
in general not well behaved. Therefore, a direct analytical comparison between the
two strategies (export vs FDI) is challenging. If ρ = 1, however, then no market
uncertainty is resolved before price is set. In this case, all else equal the export
strategy offers no additional option value (operational recourse) relative to the
FDI strategy. To see this, notice that for ρ = 1 the firm’s optimal expected profit
(Equation (1)) can be rewritten as

Vf

(
K

f ∗
0 |K0

) = max
K

f
0 ≥0

{−c0K0 − c
f
0 K

f
0 + E�ε�∗

f

(
K

f
0 |K0, �ε)}

= max
K

f
0 ≥0

{−c0K0 − c
f
0 K

f
0 + max

qij ≥0,pi≥0

{
p0Ez0 [s0]

+ p1Ez1 [s1] − δq01
}}

= max
K

f
0 ≥0,qij ≥0,pi≥0

{−c0K0 − c
f
0 K

f
0 + p0Ez0 [s0]

+ p1Ez1 [s1] − δq01
}
,

where the last equality follows from the fact that ε remains the same before price
(and quantity) is set. The following property ensues.

Remark 2: (a) If ρ = 1, then all else equal the optimal capacity expansion in
the export and FDI strategy is identical. (b) If ρ < 1, then the optimal capacity
expansion in the export strategy can differ from that in the FDI strategy.

Numerical observations indicate that the firm may in fact still invest in
a higher capacity in the export strategy, as long as some amount of demand
uncertainty is resolved in the second stage when the firm makes pricing and
allocation decisions. In summary, our earlier results (Proposition 6) do not seem
to hinge upon the assumption of responsive pricing. As long as some market
uncertainty is resolved before price is set, the firm in the export strategy may
continue to invest in higher capacity than that in the FDI strategy.

Dependent Market Prices

In our base model, we implicitly assume that market price can be set independently
between the existing and the new market. This is reasonable when the two markets
are geographically separated, for example, when trade barriers exist between the
two markets. Court rulings may also allow for independent market prices; for
example, the European Court of Justice’s ruling of the Tesco–Levi case expressly
endorses Levi’s right to charge up to twice the price for a pair of jeans in the EU
as it charges in the US (BBC News, 2001).

It is difficult to maintain different market prices in some other situations. The
prevalence of parallel trade, for example, often equalizes market prices within a
certain range. This is especially true when the court is concerned with antitrust
practices and sympathizes with the parallel traders. The European Court of Justice
recently ruled that “differences in national price regulations are in themselves not
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Figure 4: Impact of price band α on capacity investment.

(a) (b)

(c) (d)

Note: Figure 4 was obtained by using similar parameter values as that in Figure 2, except that we fix μ0 =
10, cv0 = 0.3, μ1 = 5, and cv1 = 0.3.

a sufficient justification [to impede parallel trade]” (EUROPA, 2008). Hence, the
European Court of Justice contends that firms have the right to set differential
prices, but they cannot maintain that right by impeding parallel trade.

We can incorporate dependent market prices by imposing an additional price
constraint on Equation (2) such that |p0 − p1| ≤ α, where α ≥ 0 is the market price
band. Setting α = ∞ recovers our base model. A decrease in the price band is
associated with tighter price restrictions between the existing and the new market.
Intuitively, all else equal a decrease in α tends to increase (decrease) the supply
to the market with higher (lower) prices, and hence reduces the price differential
between the two markets. Note that because of the price restriction brought by α,
the firm’s decision problem cannot be decoupled. Numerical experiment suggests
that the firm’s optimal capacity investment is in general not monotonic in α: as α

decreases, the optimal capacity may initially increase but then eventually decreases
(Figure 4).

Figure 4(a) is an example of the additive market uncertainty case. Note
that as α decreases, the firm decreases its capacity investment in both the export
and the FDI strategies. Note also that when α drops below 3.0, the FDI strategy
abandons new market entry altogether. Because price restriction dampens the
value of flexibility, it is not surprising that price band α tends to reduce the
level of capacity investment in the export strategy as well. Figure 4(b) illustrates
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the multiplicative market uncertainty case where it can be optimal for both the
export strategy and the FDI strategy to abandon capacity investment in the new
market when α becomes very restrictive. The following proposition formalizes this
observation.

Proposition 11: All else equal, a firm may abandon market entry when price band
α approaches zero.

From a trade regulation perspective, then, price regulation may have a signifi-
cant impact on the firm’s capacity investment decisions. Court opinions on parallel
trade, for example, may unwittingly hurt customers in the new market when price
pressure hinders the firm’s expansion to the new market. It is also clear that our
earlier result (Proposition 10) is no longer true in general. That is, with dependent
market prices it is possible that capacity investment in the new market may result
in a decrease in the firm’s expected supply to its existing market.

In summary, if the firm cannot perfectly price-discriminate between the
existing and the new market, then the firm in the export strategy may be less
likely to engage in capacity investment, and there is no guarantee that capacity
investment in export strategy will not decrease the supply to the firm’s existing
market. From a policy point of view, trade policies that influence a firm’s ability
to price differentiate between markets can have a significant impact on the firm’s
capacity investment decisions.

Multiple Periods

We investigate in this section whether or not the results in our base model carry
over to a multiperiod setting. Specifically, the firm makes a capacity investment
decision at stage 0, and this capacity remains as a production upper bound in
all subsequent periods. Production decisions are made at the beginning of each
period. Let ĉ

f
i (ĉd

i ) denote the unit production cost, and hence c
f
i − ĉ

f
i (cd

i − ĉd
i ) is

the unit capacity investment cost. In each period, let y ≥ x denote the inventory
after production decision, where x is the amount of inventory at the beginning of
each period. Let 0 < γ < 1 denote the one-period discount factor and h denote
the per-unit holding cost for leftover inventories. We focus on the export strategy
because the FDI strategy can be analogously solved. The expected value function
starting at the beginning of period t with a starting inventory of x is

Vt

(
K

f
0 , x |K0

) = max
y≤x+K0+K

f
0

−ĉ
f
0 (y − x)

+ E�ε
[
�∗

f (y | �ε) + γVt+1
(
K

f
0 , y − x|K0

)]
, (12)

where �∗
f (y, �ε) = maxq00+q01≤y p0(q00, ε0)q00 + p1(q01, ε1)q01 − δq01 − h(y −

q00 − q01). In the last period, the terminal condition for the expected
value function satisfies VT +1(Kf

0 , x|K0) = ĉ
f
0 x. Define G(Kf

0 , y|K0) = −ĉ
f
0 y +

E�ε�∗
f (y|�ε). The expected value function can be rewritten as Vt (K

f
0 , y|K0) =

maxy≤K0+K
f
0 +x G(Kf

0 , y|K0) + γ E�εVt+1(Kf
0 , y − q00 − q01|K0) + ĉ

f
0 x. Notice

that x ≥ 0 for any period because of responsive pricing. The form of the ex-
pected value function is similar to that of Van Mieghem and Rudi (2002), hence
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we leverage Proposition 4 in Van Mieghem and Rudi (2002, p. 329) to prove that
a base-stock policy is optimal.

Proposition 12: A base-stock policy with level S∗ is optimal, where S∗ maximizes
the one-period profit function G(Kf

0, y | K0).

Assuming that the firm follows the optimal base-stock policy, the optimal
expected profit in each period is stationary, and therefore the capacity investment
decision at time 0 can be obtained by solving

J ∗ = max
K

f
0

−(
c
f
0 − ĉ

f
0

)
K

f
0 + V1

(
K

f
0 , 0 |K0

)
= max

K
f
0

−(
c
f
0 − ĉ

f
0

)
K

f
0 + 1 − γ T

1 − γ
G

(
K

f
0 , S∗ |K0

)
, (13)

Comparing Equation (13) with the single-period value function of Equation (1)
and recognizing that γ < 1, one can see that the optimal capacity investment
in a multiperiod setting is higher than that in a single-period setting. This is
somewhat expected because the longer time horizon increases the value of capacity
investment. It is challenging to directly compare the optimal capacity investment
level between the export and the FDI strategy in the multiperiod setting, but
Equation (13) seems to suggest that the optimal capacity expansion decision is not
fundamentally altered by the multiperiod setting (because G(Kf

0, S∗|K0) is exactly
the one-period profit function). Nevertheless, we believe that further investigation
is merited in future research.

CONCLUSION

In this research we study a firm’s capacity investment problem with responsive
pricing under two commonly observed market entry strategies, namely, the export
strategy and the FDI strategy. A unique feature of this research is that we explicitly
consider the firm’s existing production capacity, which is often absent in the global
facility network design literature. The consideration of the firm’s existing capacity
is important because, for example, Khanna and Palepu (2010) found that firms
typically expand into global markets only after they have already established some
existing domestic production capabilities. It is the existence of such production
facilities that give rise to strategic questions of exporting versus FDI, which “con-
cerns the extent to which the firm will export or produce locally. It can rely on 100
percent export of finished goods, export of components but localized assembly,
100 percent local production, and so on” (Gupta & Govindarajan, 2000, p. 48).

We found that the firm’s existing capacity has a significant, nonmonotonic
effect on the firm’s strategic preference between export and FDI: a higher existing
capacity makes the FDI strategy more attractive, but only up to a certain point,
beyond which the export strategy becomes more attractive. In contrast, the effect
of exporting cost on the firm’s strategic choice is fairly straightforward: the export
strategy becomes less attractive as the exporting cost increases. We prove, however,
that even if exporting cost approaches infinity, it is possible that the firm may still
prefer (the degenerate) export strategy to the FDI strategy.
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From a planning perspective, we prove that all else equal, a firm in the export
strategy may invest in a higher capacity level than would a firm in the FDI strategy.
This result holds even if one of the markets does not exhibit any uncertainty, a
result that cannot happen if market price is exogenous. Furthermore, we prove
that a firm in the FDI strategy supplies less (in expectation) to its existing market
but a firm using export strategy may not. We also show that regulatory price
restrictions may dampen the firm’s capacity investment in both the existing and the
new market; extreme price restriction may result in the firm abandoning the new
market altogether. From a trade regulation point of view, therefore, policy makers
should carefully consider such potential impacts when setting trade policies.

The class of capacity investment problem with new market entry offers
a number of future research opportunities. How would the possibility of supply
disruption, for example, influence the firm’s capacity investment levels between the
export and the FDI strategies? Also, trade barriers (Wang, Gilland, & Tomlin, 2011)
and regulations (World Trade Organization, 2011) may create stochastic allocation
costs such that δ becomes a random variable. How would such trade barriers
influence the firm’s market entry decisions? Another aspect worth exploring is the
implication of lead times: the firm in the export strategy may encounter longer
and oftentimes stochastic lead times to supply the new market. How would such
stochastic lead times affect the firm’s preference toward export versus FDI strategy?
We hope answers to these and other questions will yield further insights into the
firm’s capacity investment problem under different market entry strategies.
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APPENDIX: PROOFS

Proof of Proposition 1: We first present a more general result using special
properties of the class of mathematical programs similar to that in Equations (2)
and (5). �
Lemma 1: Let f : U → R be a continuous, twice-differentiable function, where U
is a convex subset of Rn. Let gi, i = 1, . . . , m, be convex functions on U → R. For
any �b ∈ Rm, let V (�b) denote the optimal solution to the following mathematical
programming

max f (�x) s.t. �x ∈ U : gi(�x) ≤ bi, i = 1, . . . , m. (A1)

If f is concave, then V (�b) is concave in �b.

Proof: The lemma statement and its proof are similar to Theorem 21.23 (b) in
Simon and Blume (1994, p. 533). We briefly present the proof for completeness.
Let �b0 = t�b1 + (1 − t)�b2 for any 0 ≤ t ≤ 1. Let �xi , i = 0, 1, 2, denote the respective
set of �x that maximizes f corresponding to �bi . For j = 1, . . . , m, we have

gj (t �x1 + (1 − t)�x2) ≤ tgj (�x1) + (1 − t)gj (�x2) ≤ tb1
j + (1 − t)b2

j = b0
j .

It follows that any linear combination of t �x1 + (1 − t)�x2 is again a feasible solution
to Equation (A1) under �b0. By definition, the optimal solution to Equation (A1)
under �b0 is given by V (�b0) = f (�x0). Because by assumption f is concave, we have

V (�b0) = f (�x0) ≥ f (t �x1 + (1 − t)�x2) ≥ tf (�x1) + (1 − t)f (�x2)

= tV (�b1) + (1 − t)V (�b2),

which is the definition of concave functions. �
Hence, the proposition statement is true if �f (�q|Kf

0 , K0, �ε) and
�d (�q|Kd

1 , K0, �ε) are both concave functions. Consider �f (�q|Kf
0 , K0, �ε), by Equa-

tion (2) we have ∂2�f (�q|Kf
0 ,K0,�ε)

∂q2
i

= p′′
i (qi, εi)qi + 2p′

i(qi, εi). Define Hi(·, εi) =
p−1

i (·, εi). We have Hi(pi(qi, εi), εi) = qi. For presentational clarity, in what
follows we drop the parameter εi and simply write, for example, Hi(pi(qi))
= qi. By chain rule, we have H′

i(pi(qi))p′
i(qi) = 1 ⇒ p′

i(qi) = 1/H′
i(pi(qi)) =

1/hi(pi(qi), where we use hi(·) to denote the derivative of Hi(·). Also note that
p′′

i (qi) = −(1/h2
i (pi(qi)))h′

i(pi(qi))p′
i(qi) = −h′

i(pi(qi))/h3
i (pi(qi)). Substituting p′

i(qi)

and p′′
i (qi) into the expression of ∂2�f (�q|Kf

0 ,K0,�ε)
∂q2

i

, we have

∂2�f

(�q|Kf
0 , K0, �ε)

∂q2
i

= −h′
i(pi(qi))Hi(pi(qi)) + 2h2

i (pi(qi))

h3
i (pi(qi))

. (A2)

Because hi(·) ≤ 0 (demand decrease in price), the R.H.S. of Equation (A2)
is nonpositive if and only if −h′

i(pi(qi))Hi(pi(qi)) + 2h2
i (pi(qi)) ≥ 0. Be-

cause Hi(·, εi) = p−1
i (·, εi), by Assumption 1, we have h2

i (x) ≥ Hi(x)h′
i(x)⇒

− hi
′(pi(qi))Hi(pi(qi)) + 2h2

i (pi(qi)) ≥ 0. Further note that ∂2�f (�q|Kf
0 ,K0,�ε)

∂qi∂qj
= 0. It

follows that �f (�q|Kf
0 , K0, �ε) is concave in �q. The proposition statement
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then follows by applying Lemma 1. The proof for �d (�q|Kd
1 , K0, �ε) follows

analogously. �

Proof of Proposition 2: The proposition statement follows from Proposition 1,
and specific expressions of ∂�∗

f (Kf
0 |K0, �ε)/∂K

f
0 in different demand regions �2

to �3 can be obtained by taking first-order derivatives of Equation (7) with respect
to Kf

0. The marginal value of Kd
1 in the FDI strategy ∂�∗

d (Kd
1 |K0, �ε)/∂Kd

1 can be
similarly obtained. �

Proof of Proposition 3: Part (a). We prove the proposition statement by contradic-
tion. Suppose δ ≤ cd

1 − c0
f but V∗

f < V∗
d. Let Kf ∗

0 and Kd∗
1 denote the corresponding

optimal capacities. Because δ ≤ cd
1 − cf

0 ⇒ cf
0 + δ ≤ cd

1, Vd(Kd∗
1 |K0) ≤ Vd(Kd∗

1 −
ξK |K0) + Vf (ξK|K0) for any 0 ≤ ξK ≤ Kd∗

1 . Setting ξK ≤ Kd∗
1 , we have Vd(Kd∗

1 |K0)
≤ Vf (Kd∗

1 |K0) ≤ Vf (K
f ∗
0 |K0), proving the contradiction.

Part (b). By Proposition 2, the unit exporting cost δ is incurred only in regions
�e = �2.2 ∪ �3.1 ∪ �3.2. Let �

f
e and �d

e denote the respective exporting regions
for the export and FDI strategy, respectively. Applying the envelope theorem to
Equations (1) and (4), we have

∂V ∗
f

∂δ
= ∂�∗

f

(
K

f
0 |K0

)
∂δ

= −E�
f
e

[
q∗

01|Kf
0

]
,

∂V ∗
d

∂δ
= ∂�∗

d

(
Kd

1 |K0
)

∂δ
= −E�d

e

[
q∗

01|Kd
1

]
,

where the last equalities follow from Proposition 2. First observe that for any given
realized market uncertainty �ε, q∗

01|Kf
0 ≥ q∗

01|Kd
1, because the exporting quantity un-

der the FDI strategy is a relaxation of that in the export strategy. By definition of
the demand space partitions, �f

e ≥ �d
e . Combining the above two observations, we

have E�
f
e
[q∗

01|Kf
0 ] ≥ E�d

e
[q∗

01|Kd
1 ] ⇒ ∂V ∗

f /∂δ ≤ ∂V ∗
d /∂δ. The proposition state-

ment then follows directly.
Part (c). We prove the proposition statement by constructing an example. First

partition ε0 into two regions �0 and �1, where �1 = {ε0 : MR0(K0, ε0) ≥ 0} and
�0 is the complement of �1. Let K0 be the unique solution to E�1 [MR0(K0, ε0)] =
c0. In essence, K0 is the upper bound on the firm’s existing capacity such that
if K0 ≥ K0, then Kf ∗

0 = 0 if the firm serves its existing market demand only.
Conversely, if K0 < K0, then all else equal, Kf ∗

0 > 0 even if the firm does not
enter the new market (i.e., when δ = ∞). Following similar logic, partition ε1

into two regions 	0 and 	1, where 	1 = {ε1 : MR1(Kd
1 , ε1) ≥ 0} and 	0 is the

complement of 	1. If E	1 [MR1(0, ε1)] ≤ cd
1 , then Kd∗

1 = 0. Hence, if c0 = cf
0 =

cd
1, K0 < K0, and E	1 [MR1(0, ε1)] ≤ cd

1 , we have Kf ∗
0 > 0, Kd∗

1 = 0, and V∗
f > V∗

d,
where the inequality follows from the fact that V∗

f > Vf (0|K0) = Vd(0|K0) = V∗
d.

This completes the proof for part (c). �

Proof of Corollary 1: We note that condition (ii) guarantees that if δ = ∞ then
Kf ∗

0 = 0 because K0 is the optimal capacity investment level for the existing market
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only. Condition (iii) guarantees that it is optimal to invest in a positive amount of
capacity Kd∗

1 > 0 if δ = ∞. It follows that when conditions (ii) and (iii) hold, Kd∗
1

> 0 and Kf ∗
0 = 0 when δ = ∞. It follows that V∗

f < V∗
d at δ = ∞. By Proposition

3, V∗
f > V∗

d at δ = 0 when condition (i) holds and ∂(V∗
f − V∗

d)/∂δ monotonically

decreases. By the interior point theorem, there exists a unique δ such that V∗
f ≥ V∗

d

for any δ ≤ δ and V∗
f < V∗

d for δ > δ. �

Proof of Proposition 4: Part (a). Applying implicit function theorem to Equa-

tion (8), we have ∂K
f ∗
0

∂K0
= − ∂v/∂K0

∂v/∂K
f ∗
0

, where v = −c
f
0 + ∑3

i=1 E�3.i
[
∂�∗

f (Kf
0 |K0,�ε)

∂K
f
0

].

By Proposition 1, we have ∂v/∂Kf ∗
0 < 0. Note that ∂v

∂K0
= E�3.1 [ ∂MR1(K0+K

f
0 ,ε1)

∂K0
] +

E�3.2 [ ∂MR0(K0+K
f
0 −q∗

01,ε0)
∂K0

] + E�3.3 [ ∂MR0(K0+K
f
0 ,ε0)

∂K0
]. Because for any given �ε, ∂MRi(x,

εi)/∂x ≤ 0, it follows that ∂v/∂K0 ≤ 0 and hence the proposition statement follows
directly. Part (b) can be analogously proved.

Part (c).

∂V ∗
f

∂K0
= −c0 + ∂E�ε�∗

f

(
K

f ∗
0 |K0, �ε)

∂K0
= −c0 + E

[
3∑

i=1

�3.i

∂�∗
f

(
K

f ∗
0 |K0, �ε)

∂K0

]
=−c0 + E�3.1

[
MR1

(
K0 + K

f ∗
0 , ε1

) − δ
]+E�3.2

[
MR0

(
K0 + K

f ∗
0 − q∗

01, ε0
)]

+ E�3.3

[
MR0

(
K0 + K

f ∗
0 , ε0

)]
= − c0 + E

[
3∑

i=1

�3.i

∂�∗
f

(
K

f ∗
0 |K0, �ε)

∂K
f
0

]
= −c0 + c

f
0 .

Part (d).

∂V ∗
d

∂K0
= −c0 + ∂E�ε�∗

d

(
Kd∗

1 |K0, �ε)
∂K0

= −c0 + E

[∑
i

�i

∂�∗
d

(
Kd∗

1 |K0, �ε)
∂K0

]
= − c0 + E�1 [MR0(K0, ε0)] + E�3.1

[
MR1

(
K0 + Kd∗

1 , ε1
) − δ

]
+ E�3.2

[
MR0

(
K0 − q∗

01, ε0
)] + E�3.3 [MR0(K0, ε0)]

= − c0 + E

[∑
i

�i

∂�∗
d

(
Kd∗

1 |K0, �ε)
∂Kd

1

]
+ E�1 [MR0(K0, ε0)]

− E�2.2

[
MR1

(
Kd

1 + q∗
01, ε1

)]
− E�2.1∪�3.3

[
MR1

(
Kd

1 , ε1
)] + E�3.3 [MR0(K0, ε0)] − Pr(�3.1 ∪ �3.2)δ

= − c0 + cd
1 + E�1∪�3.3 [MR0(K0, ε0)] − E�2.1∪�3.3

[
MR1

(
Kd

1 , ε1
)]

− Pr(�2.2 ∪ �3.1 ∪ �3.2)δ. �

Proof of Proposition 5: By part (c) of Proposition 4, ∂V∗
f /∂K0 = 0 when c0 =

cf
0. Hence, the sign of ∂(V∗

d − V∗
f )/∂K0 depends on ∂V∗

d/∂K0 only. Although a
direct analysis of ∂V∗

d/∂K0 yields ambiguous sign (part (d) of Proposition 4), we
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can construct a boundary capacity level K̃0 such that the sign of ∂V∗
d/∂K0 can be

unambiguously signed. Consider the case where the firm can invest in K̃
f
0 and

K̃d
1 simultaneously and let K̃0 = K0 + K̃

f ∗
0 , where K̃

f ∗
0 is the optimal capacity

investment level in the existing market assuming the firm can also optimally invest
K̃d∗

1 in the new market. Let Ṽ ∗ denote the corresponding optimal expected profit.
Because the FDI strategy is a constrained version of the above described scenario,
it is clear that V ∗

d ≤ Ṽ ∗. Leveraging Proposition 1, it is straightforward to show
that Ṽ is jointly concave in K̃

f
0 and K̃d

1 . It follows that ∂V∗
d/∂K0 > 0 for K0 < K̃0

and ∂V∗
d/∂K0 < 0 for K0 > K̃0. The uniqueness of K̃0 follows the fact that Ṽ

is jointly concave in K̃
f
0 and K̃d

1 . Finally, K̃0 > K0 because K0 is a constrained
capacity investment decision when the firm serves the existing market only. �

Proof of Proposition 6: Part (a). By part (b) of Proposition 2,
E[ε1] ≤ cd

1 ⇒ Kd∗
1 = 0, in other words, the firm in the FDI strategy does not invest

any dedicated capacity in the new market. In the export strategy, if MR1(0, ε1) > δ

then by part (a) of Proposition 2 the optimal (interior) Kf ∗
0 satisfies c

f
0 =∑3

i=1 E�3.i
[
∂�∗

f (Kf
0 |K0,�ε)

∂K
f
0

] = E�3.1 [MR1(K0 + K
f
0 , ε1) − δ] + E�3.2 [MR1(K0 +

K
f
0 − q∗

01, ε1)] + E�3.3 [MR0(K0 + K
f
0 , ε0)] > E�1 [MR0(K0, ε0)], where �1 is

defined in the proof of part (c) of Proposition 3. Note that in the above expression
the region �3.1 is nonempty because by assumption (ii) there exists ε1 > ε1. Note
that K0 exactly satisfies c0 = E�1 [MR0(K0, ε0)], combining this with the fact that
cf

0 ≤ c0, it follows directly that Kf ∗
0 > 0.

Part (b). By the above analysis, if E[ε1] > cd
1 then Kd

1 ≥ 0. Define �K =
Kf ∗

0 − Kd∗
1 , then �K > 0 when E[ε1] = cd

1 . Because Vd(Kd
1|K0) is continuous,

concave in Kd
1 (Proposition 1), and MR1(x, ε1) is increasing in x for any x, Kd∗

1 is
monotonically increasing in ε1. Hence, by the intermediate value theorem, there
exists a cd

1 such that for all E[ε1] ≤ cd
1 , �K > 0 ⇒ Kd∗

1 < Kf ∗
0 . �

Proof of Proposition 7: Part (a). It suffices to prove that ∂V∗
f /∂ε1 ≥ 0. Ap-

plying the envelope theorem to Equation (1), we have
∂V ∗

f

∂ε1
= ∂E�ε�∗

f (Kf ∗
0 |K0,�ε)

∂ε1
=

E�2.2 [ ∂R1(q∗
01,ε1)

∂ε1
] + E�3.1 [ ∂R1(K0+K

f ∗
0 ,ε1)

∂ε1
] + E�3.2 [ ∂R1(q∗

01,ε1)
∂ε1

] > 0, where the inequal-

ity follows from Assumption 2 and the fact that ∂MR1(·,ε1)
∂ε1

> 0 ⇒ ∂
∫

MR1(x,ε1)
∂ε1

dx >

0 ⇒ ∂R1(·,ε1)
∂ε1

> 0.

Part (b). Following analogously from part (a), we have ∂V ∗
d

∂ε1
=

∂E�ε�∗
d (Kd∗

1 |K0,�ε)
∂ε1

= E�0∪�1 [ ∂R1(q∗
11,ε1)

∂ε1
] + E�2.1 [ ∂R1(Kd∗

1 ,ε1)
∂ε1

] + E�2.2 [ ∂R1(Kd∗
1 +q∗

01,ε1)
∂ε1

] +
E�3.1 [ ∂R1(K0+Kd∗

1 ,ε1)
∂ε1

] + E�3.2 [ ∂R1(Kd∗
1 +q∗

01,ε1)
∂ε1

] + E�3.3 [ ∂R1(Kd∗
1 ,ε1)

∂ε1
] > 0.

Part (c). The proposition statement is true if ∂(V∗
f − V∗

d)/∂ε1 ≤ 0. By parts
(a) and (b), for any given �ε (i.e., in any � regions) the optimal output allocated
to market 1 in FDI strategy is greater than that in export strategy (i.e., qd∗

1 = qd∗
11

+ qd∗
01 > qf ∗

01 = qf ∗
1 ) if Kd∗

1 ≥ Kf ∗
0 . Because R1(q, ε1) is concave in q, it follows

that Rd
1(·, ε1) ≥ Rf

1(·, ε1) for any given �ε. It is straightforward to show that ∂R1(q,
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ε1)/∂ε1 is nondecreasing in q, we therefore have ∂(V∗
f − V∗

d)/∂ε1 ≤ 0. Note that if

Kd∗
1 < Kf ∗

0 , however, the reverse is not necessarily true. In other words, Kd∗
1 < Kf ∗

0
� ∂(V∗

f − V∗
d)/∂ε1 > 0. �

Proof of Proposition 8: Part (a). By Proposition 2, the optimal (interior) Kf ∗
0

satisfies

−c
f
0 + E�3.1

[
MR1

(
K0 + K

f
0 , ε1

) − δ
] + E�3.2

[
MR0

(
K0 + K

f
0 − q∗

01, ε0
)]

+ E�3.3

[
MR0(K0 + K

f
0 , ε0)

] = 0. (A3)

Let H denote the L.H.S. of Equation (A3), we have ∂K
f ∗
0

∂ε1
= − ∂H/∂ε1

∂H/∂K
f ∗
0

. By Equa-

tion (A3), we have

∂H

∂ε1
= E�3.1

[
∂MR1

(
K0 + K

f
0 , ε1

)
∂ε1

]
+ E�3.2

[
∂MR0

(
K0 + K

f
0 − q∗

01, ε0
)

∂q∗
01

· ∂q∗
01

∂ε1

]
.

(A4)

Note that in �3.2, the optimal q∗
01 satisfies

MR1(q∗
01, ε1) − δ − MR0

(
K0 + K

f ∗
0 − q∗

01, ε0
) = 0. (A5)

Let I denote the L.H.S. of Equation (A5), we have ∂q∗
01

∂ε1
= − ∂I/∂ε1

∂I/∂q∗
01

. By Equa-
tion (A5), we have

∂q∗
01

∂ε1
= −

∂I

∂ε1

∂I

∂q∗
01

= −
∂MR1(q∗

01, ε1)

∂ε1

∂MR1(q∗
01, ε1)

∂q∗
01

− ∂MR0
(
K0 + K

f ∗
0 − q∗

01, ε0
)

∂q∗
01

. (A6)

Substituting Equation (A6) into Equation (A4), we have

∂H

∂ε1
= E�3.1

[
∂MR1

(
K0 + K

f
0 , ε1

)
∂ε1

]

+ E�3.2

⎡⎢⎢⎢⎣−
∂MR0

(
K0 + K

f
0 − q∗

01, ε0
)

∂q∗
01

· ∂MR1(q∗
01, ε1)

∂ε1

∂MR1(q∗
01, ε1)

∂q∗
01

− ∂MR0
(
K0 + K

f ∗
0 − q∗

01, ε0
)

∂q∗
01

⎤⎥⎥⎥⎦
= E�3.1

[
∂MR1

(
K0 + K

f
0 , ε1

)
∂ε1

]
+ E�3.2

[
∂MR1(q∗

01, ε1)

∂ε1
· ηf

]
,

(A7)
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where

ηf = 1

1 −
∂MR1(q∗

01, ε1)

∂q∗
01

∂MR0
(
K0 + K

f ∗
0 − q∗

01, ε0
)

∂q∗
01

= 1

1 + MR′
1(q∗

01, ε1)

MR′
0

(
K0 + K

f ∗
0 − q∗

01, ε0
) > 0,

(A8)

where for notational ease we use MR′
i(x, εi) = ∂MR′

i(x, εi)/∂x to denote the
partial derivative of marginal revenue function with respective to its first argument.
By Equation (A7) and Assumption 2, we conclude that ∂H/∂ε1 > 0. Now consider
∂H/∂Kf ∗

0 , we have

∂H

∂K
f ∗
0

= E�3.1

[
∂MR1

(
K0 + K

f
0 , ε1

)
∂K

f
0

]
+ E�3.2

[
∂MR0

(
K0 + K

f
0 − q∗

01, ε0
)

∂K
f
0

]

+ E�3.2

[
∂MR0

(
K0 + K

f
0 − q∗

01, ε0
)

∂q∗
01

· ∂q∗
01

∂K
f
0

]

+ E�3.3

[
∂MR0

(
K0 + K

f
0 , ε0

)
∂K

f
0

]
. (A9)

Using a similar approach as in calculating ∂q∗
01/∂ε1, we have

∂q∗
01

∂k
f
0

= −

∂I

∂K
f
0

∂I

∂q∗
01

= −

∂MR0
(
K0 + K

f
0 − q∗

01, ε0
)

∂K
f
0

∂MR1(q∗
01, ε1)

∂q∗
01

− ∂MR0
(
K0 + K

f ∗
0 − q∗

01, ε0
)

∂q∗
01

.

(A10)

Substituting Equation (A10) into Equation (A9), we have

∂H

∂K
f ∗
0

= E�3.1

[
∂MR1

(
K0 + K

f
0 , ε1

)
∂K

f
0

]
+ E�3.2

[
∂MR0

(
K0 + K

f
0 − q∗

01, ε0
)

∂K
f
0

]

+ E�3.2

⎡⎢⎢⎢⎢⎣−

∂MR0
(
K0 + K

f
0 − q∗

01, ε0
)

∂q∗
01

· ∂MR0
(
K0 + K

f
0 − q∗

01, ε0
)

∂K
f
0

∂MR1(q∗
01, ε1)

∂q∗
01

− ∂MR0
(
K0 + K

f ∗
0 − q∗

01, ε0
)

∂q∗
01

⎤⎥⎥⎥⎥⎦
+ E�3.3

[
∂MR0

(
K0 + K

f
0 , ε0

)
∂K

f
0

]
= E�3.1

[
MR′

1

(
K0 + K

f
0 , ε1

)] + E�3.2

[
MR′

1(q∗
01, ε1) · ηf

]
+ E�3.3

[
MR′

0

(
K0 + K

f
0 , ε0

)]
, (A11)
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where ηf is defined in Equation (A8). By Proposition 1 MR′
i(·, εi) < 0. Combining

with the fact that ηf > 0, we conclude that ∂H/∂Kf ∗
0 < 0. The proposition statement

then follows directly.
Part (b). By Proposition 2, the optimal (interior) Kd∗

1 satisfies

−cd
1 + E�2.1∪�3.3

[
MR1

(
Kd

1 , ε1
)] + E�2.2

[
MR1

(
Kd

1 + q∗
01, ε1

)]
+ E�3.1

[
MR1

(
K0 + Kd

1 , ε1
)] + E�3.2

[
MR1

(
Kd

1 + q∗
01, ε1

)] = 0.

(A12)

Let H denote the L.H.S. of Equation (A12), we have ∂Kd∗
1

∂ε1
= − ∂H/∂ε1

∂H/∂Kd∗
1

. By Equa-
tion (A12), we have

∂H

∂ε1
= E�2.1∪�3.3

[
∂MR1

(
Kd

1 , ε1
)

∂ε1

]

+ E�2.2

[
∂MR1

(
Kd

1 + q∗
01, ε1

)
∂ε1

+ ∂MR1
(
Kd

1 + q∗
01, ε1

)
∂q∗

01

· ∂q∗
01

∂ε1

]

+ E�3.1

[
∂MR1

(
K0 + Kd

1 , ε1
)

∂ε1

]

+ E�3.2

[
∂MR1

(
Kd

1 + q∗
01, ε1

)
∂ε1

+ ∂MR1
(
Kd

1 + q∗
01, ε1

)
∂q∗

01

· ∂q∗
01

∂ε1

]
,

(A13)

where we note that the optimal q∗
01 in �2.2 and �3.2 satisfy differ-

ent conditions. In particular, in �2.2, the optimal q∗
01 satisfies MR1(Kd

1 +
q∗

01, ε1) − δ = 0. Applying the implicit function theorem, we have ∂q∗
01

∂ε1
=

− ∂MR1(Kd
1 +q∗

01,ε1)
∂ε1

/
∂MR1(Kd

1 +q∗
01,ε1)

∂q∗
01

. Substituting ∂q∗
01

∂ε1
into Equation (A13), we have

E�2.2 [ ∂MR1(Kd
1 +q∗

01,ε1)
∂ε1

+ ∂MR1(Kd
1 +q∗

01,ε1)
∂q∗

01
· ∂q∗

01
∂ε1

] = 0. Now consider �3.2. The optimal
q∗

01 satisfies

MR1
(
Kd

1 + q∗
01, ε1

) − δ − MR0(K0 − q∗
01, ε0) = 0. (A14)

Let I denote the L.H.S. of Equation (A14), we have ∂q∗
01

∂ε1
= − ∂I/∂ε1

∂I/∂q∗
01

. By Equa-
tion (A14), we have

∂q∗
01

∂ε1
= −

∂I

∂ε1

∂I

∂q∗
01

= −
∂MR1

(
Kd

1 + q∗
01, ε1

)
∂ε1

∂MR1
(
Kd

1 + q∗
01, ε1

)
∂q∗

01

− ∂MR0(K0 − q∗
01, ε0)

∂q∗
01

.

(A15)
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Substituting Equation (A15) into Equation (A13), we have

∂H

∂ε1
= E�2.1∪�3.3

[
∂MR1

(
Kd

1 , ε1
)

∂ε1

]
+ E�3.1

[
∂MR1

(
K0 + Kd

1 , ε1
)

∂ε1

]

+ E�3.2

⎡⎢⎢⎢⎣−
∂MR0(K0 − q∗

01, ε0)

∂q∗
01

· ∂MR1
(
Kd

1 + q∗
01, ε1

)
∂ε1

∂MR1
(
Kd

1 + q∗
01, ε1

)
∂q∗

01

− ∂MR0
(
K0 − q∗

01, ε0
)

∂q∗
01

⎤⎥⎥⎥⎦
= E�2.1∪�3.3

[
∂MR1

(
Kd

1 , ε1
)

∂ε1

]
+ E�3.1

[
∂MR1

(
K0 + Kd

1 , ε1
)

∂ε1

]

+ E�3.2

[
∂MR1

(
Kd

1 + q∗
01, ε1

)
∂ε1

· ηd

]
, (A16)

where

ηd = 1

1 −
∂MR1

(
Kd

1 + q∗
01, ε1

)
∂q∗

01
∂MR0(K0 − q∗

01, ε0)

∂q∗
01

= 1

1 + MR′
1

(
Kd

1 + q∗
01, ε1

)
MR′

0(K0 − q∗
01, ε0)

> 0.

(A17)

By Equation (A16) and Assumption 2, we conclude that ∂H/∂ε1 > 0. Now consider
∂H/∂Kd∗

1 , we have

∂H

∂Kd
1

= E�2.1∪�3.3

[
∂MR1

(
Kd

1 , ε1
)

∂Kd
1

]

+ E�2.2

[
∂MR1

(
Kd

1 + q∗
01, ε1

)
∂Kd

1

+ ∂MR1
(
Kd

1 + q∗
01, ε1

)
∂q∗

01

· ∂q∗
01

∂Kd
1

]

+ E�3.1

[
∂MR1

(
K0 + Kd

1 , ε1
)

∂Kd
1

]

+ E�3.2

[
∂MR1

(
Kd

1 + q∗
01, ε1

)
∂Kd

1

+ ∂MR1
(
Kd

1 + q∗
01, ε1

)
∂q∗

01

· ∂q∗
01

∂Kd
1

]
.

(A18)

In �2.2, we have ∂q∗
01

∂Kd
1

= − ∂MR1(Kd
1 +q∗

01,ε1)
∂Kd

1
/

∂MR1(Kd
1 +q∗

01,ε1)
∂q∗

01
. Substituting ∂q∗

01
∂ε1

into

Equation (A18), we have E�2.2 [ ∂MR1(Kd
1 +q∗

01,ε1)
∂Kd

1
+ ∂MR1(Kd

1 +q∗
01,ε1)

∂q∗
01

· ∂q∗
01

∂Kd
1

] = 0. Now

consider �3.2, we have

∂q∗
01

∂kd
1

= −

∂MR1
(
Kd

1 + q∗
01, ε1

)
∂Kd

1

∂MR1
(
Kd

1 + q∗
01, ε1

)
∂q∗

01

− ∂MR0(K0 − q∗
01, ε0)

∂q∗
01

.

(A19)
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Substituting Equation (A19) into Equation (A18), we have

∂H

∂Kd
1

= E�2.1∪�3.3

[
∂MR1

(
Kd

1 , ε1
)

∂Kd
1

]
+ E�3.1

[
∂MR1

(
K0 + Kd

1 , ε1
)

∂Kd
1

]

+ E�3.2

⎡⎢⎢⎢⎣−
∂MR0(K0 − q∗

01, ε0)

∂q∗
01

· ∂MR1
(
Kd

1 + q∗
01, ε0

)
∂Kd

1

∂MR1
(
Kd

1 + q∗
01, ε1

)
∂q∗

01

− ∂MR0(K0 − q∗
01, ε0)

∂q∗
01

⎤⎥⎥⎥⎦
= E�2.1∪�3.3

[
MR′

1

(
Kd

1 , ε1
)] + E�3.1

[
MR′

1

(
K0 + Kd

1 , ε1
)]

+ E�3.2

[
MR′

1

(
Kd

1 + q∗
01, ε1

) · ηd
]
, (A20)

where ηd is defined in Equation (A17). By Proposition 1, MR′
i(·, εi) < 0. Com-

bining with the fact that ηd > 0, we conclude that ∂H/∂Kd∗
1 < 0. The proposition

statement then follows directly. �

Proof of Corollary 2: By the proof of Proposition 8, we have

∂K
f ∗
0

∂ε1
= −

E�3.1

⎡⎣ ∂MR1

(
K0 + K

f
0 , ε1

)
∂ε1

⎤⎦ + E�3.2

[
∂MR1(q∗

01, ε1)

∂ε1
· ηf

]
�′

f

,

∂Kd∗
1

∂ε1
=

−
E�2.1∪�3.3

⎡⎣ ∂MR1

(
Kd

1 , ε1

)
∂ε1

⎤⎦ + E�3.1

⎡⎣ ∂MR1

(
K0 + Kd

1 , ε1

)
∂ε1

⎤⎦ + E�3.2

⎡⎣ ∂MR1

(
Kd

1 + q∗
01, ε1

)
∂ε1

· ηd

⎤⎦
�′

d

,

where �′
f and �′

d are defined before Corollary 2, and ηf and ηd are defined in
Equations (A8) and (A17), respectively.

Part (a). If the inverse demand function is additive, then Ri(x, εi) =
pi(qi, εi)qi = (pi(qi) + εi)qi ⇒ MRi(x, εi) = MRi(x) + εi ⇒ ∂MRi (x,εi )

∂εi
= 1. It

follows that ∂(Kf ∗
0 −Kd∗

1 )
∂ε1

= −1
�′

f
− −1

�′
d

⇒ ∂(Kf ∗
0 −Kd∗

1 )
∂ε1

≤ 0 if −1
�′

f
− −1

�′
d

≤ 0 ⇔ 1
�′

d
≤

1
�′

f
⇔ �′

f ≤ �′
d .

Part (b). If the inverse demand function is multiplicative, then
Ri(x, εi) = pi(qi, εi)qi = pi(qi)qiεi ⇒ MRi(x, εi) = MRi(x) · εi ⇒ ∂MRi (x,εi )

∂εi
=

MRi(x) = MRi(x, 1). It follows that ∂(Kf ∗
0 −Kd∗

1 )
∂ε1

= −�f

�′
f

+ �d

�′
d

⇒ ∂(Kf ∗
0 −Kd∗

1 )
∂ε1

≤ 0

if −�f

�′
f

+ �d

�′
d

≤ 0 ⇔ �f

�′
f

≥ �d

�′
d
. �

Proof of Remark 1: By Corollary 2, as ε1 becomes sufficiently large (in the

stochastic sense), the derivative ∂K
f ∗
0

∂ε1
is dominated by the region �3.1, i.e.,

∂K
f ∗
0

∂ε1
≈ − E�3.1 [

∂MR1(K0+K
f
0 ,ε1)

∂ε1
]

E�3.1 [MR′
1(K0+K

f
0 ,ε1)]

, and similarly ∂Kd∗
1

∂ε1
≈ − E�3.1 [

∂MR1(K0+Kd
1 ,ε1)

∂ε1
]

E�3.1 [MR′
1(K0+Kd

1 ,ε1)]
. If the

inverse demand function is additive, then the above expression can be simplified
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to ∂K
f ∗
0

∂ε1
≈ − Pr(�3.1)

E�3.1 [MR′
1(K0+K

f
0 ,ε1)]

and ∂Kd∗
1

∂ε1
≈ − Pr(�3.1)

E�3.1 [MR′
1(K0+Kd

1 ,ε1)]
. It follows that

when Pr(�3.1) is approximately similar in the export and the FDI strategy (because

ε1 is sufficiently large stochastically), ∂(Kf ∗
0 −Kd∗

1 )
∂ε1

≤ 0 when Kf
0 ≤ Kd

1. If the inverse
demand function is multiplicative, then the above expression can be simplified

to ∂K
f ∗
0

∂ε1
≈ − E�3.1 [MR1(K0+K

f
0 ,1)]

E�3.1 [MR′
1(K0+K

f
0 ,ε1)]

, and similarly ∂Kd∗
1

∂ε1
≈ − E�3.1 [MR1(K0+Kd

1 ,1)]

E�3.1 [MR′
1(K0+Kd

1 ,ε1)]
. Let

the inverse demand function be in the form of pi(qi, εi) = (ai − biqi)εi. We

have ∂K
f ∗
0

∂ε1
≈ −E�3.1 [a1−2b1(K0+K

f
0 )]

E�3.1 [2b1ε1)]
= E�3.1 [ a1−2b1(K0+K

f
0 )

2b1ε1
], and similarly ∂Kd∗

1
∂ε1

≈
−E�3.1 [a1−2b1(K0+Kd

1 )]

E�3.1 [2b1ε1)]
= E�3.1 [ a1−2b1(K0+Kd

1 )
2b1ε1

]. The corollary statement then follows

directly. �

Proof of Proposition 9: Part (a). By Proposition 6, we have Kf ∗
0 > 0 and Kd∗

1 =
0 when the condition in part (a) holds. In addition, by Lemma 4 in Dong et al.
(2010), we have εa

1 ≥ssd εb
1 ⇒ K

f ∗
0 (εa

1) ≥ K
f ∗
0 (εb

1). Combine the above together,
we have εa

1 ≥ssd εb
1 ⇒ K

f ∗
0 (εa

1) − Kd∗
1 (εa

1) ≥ K
f ∗
0 (εb

1) − Kd∗
1 (εb

1).
Part (b) follows from Proposition 6 in Dong et al. (2010). �

Proof of Proposition 10: Part (a). Using part (b) of Proposition 2, there exists
positive realizations of ε1 such that q∗

01 > 0. Because in the FDI strategy the
capacity investment in the existing market remains the same at K0, the expected
supply available to the existing market decreases from K0 to K0 − E�ε[q∗

01] < K0.
By the proof of Proposition 2 it is straightforward to see that ∂q∗

00/∂K0 ≥ 0, it
follows that the expected allocation q∗

00 decreases as E�ε[q∗
01] increases.

Part (b). First note that K0 < K0 ⇒ K
f ∗
0 > 0 even if ε1 = 0. Because E�ε[q∗

00]
increases in K0 + Kf

0, it follows that the expected supply to the existing market
strictly increases. Now consider the case K0 = K0, where any additional capacity
investment in Kf ∗

0 is strictly triggered by new market demand. We prove this
case by contradiction. Suppose the expected supply to the existing market is
reduced by δq > 0, and this δq generated an additional expected profit in the new
market for an amount of δd

v at the expense of lost revenue in the existing market
for an amount of δ

f
v. It follows that δd

v − δ
f
v > 0, suggesting that the marginal

benefit of Kf ∗
0 is greater than that of K0, but because cf

0 = c0, it is optimal to
further increase Kf ∗

0 , contradicting the fact that Kf ∗
0 is optimal capacity investment

level. �

Proof of Proposition 11: Let �f (Kf
0 |K0, �ε; α) denote the firm’s second

stage profit function with price band α. Because the price band α can be
viewed as an additional constraint on �f (Kf

0 |K0, �ε) (Equation (2)), we have
∂�(Kf

0 |K0, �ε; α)/∂α ≥ 0. Let �(Ki|εi) denote the second stage profit when only
market i is served. If �∗

f (Kf
0 |K0, �ε; α = 0) < maxi �(Ki |εi), then there exists

a unique ᾱ such that the firm only serves a single market when α < ᾱ. Note
that the proposition statement can also be proved by characterizing the firm’s
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optimal allocation decisions contingent on the realizations of market uncertainty.
The details are tedious (because α introduces nonlinear demand regions) and is
not very insightful and therefore is omitted here. �

Proof of Remark 2: Part (a). The statement follows from the fact that, regardless
of the variance of market uncertainty εi , i = 0, 1, the optimal allocation quantity
(q00, q01) and (q00, q11) for any given K is identical between the export and the
FDI strategies.

Part (b). When ρ < 1, the allocation (q00, q01) in the export strategy depends
on the partial realizations of market uncertainty ωi, but the allocation (q00, q11) in
the FDI strategy does not. Hence, the optimal allocation, and therefore the capacity
investment, can differ between the two strategies. �

Proof of Proposition 12: The proof is identical to the proof of Proposition 4
in (Van Mieghem & Rudi, 2002, p. 333), with the only exception that we do not
have the shortage penalty cost term (which is linear in y, the inventory level after
production). The expected value function Vt(K

f
0, x|K0) is therefore also structured

(i.e., Vt(K
f
0, x|K0) is concave in Kf

0 and linear in the starting inventory level x).
The optimality of the base-stock policy follows from backward induction on time
period t. �

Proposition 13: Let F0(·) and F1(·) denote the distribution of random demand in
the existing and the new market, respectively. Suppose market prices are identical
such that p0 = p1 = p. If cd

1 − δF0(K0) ≤ (p − δ)
∫ K0

0 F 1(K0 − x) dF0(x) ≤ c
f
0 −

pF 0(K0) then Kd∗
1 ≥ Kf ∗

0 .

Proof of Proposition 13: With exogenous price, let ε0 and ε1 denote demand
for the existing and the new market, respectively. In addition, let F0(·) and F1(·)
denote the distribution for ε0 and ε1, respectively. For export strategy, partition the
demand space into the following three regions. ϒ1 = {�ε : ε0 ≤ K0 + K

f
0 ∩ ε1 ≤

K0 + K
f
0 − ε0}, ϒ2 = {�ε : ε0 ≤ K0 + K

f
0 ∩ ε1 > K0 + K

f
0 − ε0}, and ϒ3 = {�ε :

ε0 > K0 + K
f
0 }. Adapting Equations (1) and (2) to the exogenous price case,

we have E�ε�∗
f (Kf

0 |K0, �ε) = Eϒ1 [pε0 + (p − δ)ε1] + Eϒ2 [δε0 + (p − δ)(K0 +
K

f
0 )] + Eϒ2 [p(K0 + K

f
0 )]. It follows that

∂E�ε�∗
f

(
K

f
0 |K0, �ε)

∂K
f
0

=
∫ K0+K

f
0

0
(p − δ)F 1

(
K0 + K

f
0 − ε0

)
dF0(ε0)

+ pF 0
(
K0 + K

f
0

)
.

It is straightforward that ∂2E�ε�∗
f (Kf

0 |K0, �ε)/∂K
f
0

2 ≤ 0 and therefore the optimal

Kf ∗
0 can be obtained by setting

−c
f
0 + (p − δ)

∫ K0+K
f
0

0
F 1

(
K0 + K

f
0 − ε0

)
dF0(ε0) + pF 0

(
K0 + K

f
0

) = 0.

(A21)



140 Capacity Investment Under Responsive Pricing

For FDI strategy, partition the demand space into the following five regions. ϒ̂1 =
{�ε : ε0 ≤ K0 ∩ ε1 ≤ Kd

1 }, ϒ̂2.1 = {�ε : ε0 ≤ K0 ∩ ε1 ≤ K0 + Kd
1 − ε0}, ϒ̂2.2 =

{�ε : ε0 ≤ K0 ∩ ε1 > K0 + Kd
1 − ε0}, ϒ̂3 = {�ε : ε0 > K0 ∩ ε1 ≤ Kd

1 }, and ϒ̂4 =
{�ε : ε0 > K0 ∩ ε1 > Kd

1 }. Adapting Equations (4) and (5) to the exogenous price
case, we have E�ε�∗

d (Kd
1 |K0, �ε) = Eϒ̂1

[pε0 + pε1] + Eϒ̂2.1
[pε0 + pKd

1 + (p −
δ)(ε1 − Kd

1 )] + Eϒ̂2.2
[pε0 + pKd

1 + (p − δ)(K0 − ε0)] + Eϒ̂3
[pK0 +pε1)] + Eϒ̂4

[pK0 + pKd
1 ]. It follows that

∂E�ε�∗
d

(
Kd

1 |K0, �ε)
∂Kd

1

=
∫ K0

0

[
δ(F1

(
K0 + Kd

1 − ε0
) − F1(Kd

1 ))

+ pF 1
(
K0 + Kd

1 − ε0
)]

dF0(ε0).

It is straightforward that ∂2E�ε�∗
d (Kd

1 |K0, �ε)/∂Kd
1

2 ≤ 0 and therefore the optimal
Kd∗

1 can be obtained by setting

−cd
1 +

∫ K0

0
[δ(F1

(
K0 + Kd

1 − ε0
) − F1(Kd

1 ))

+ pF 1
(
K0 + Kd

1 − ε0
)
] dF0(ε0) = 0. (A22)

The proposition statement then follows by setting Equation (A21) less than zero
for Kf

0 = 0 and by setting Equation (A22) greater than zero for Kd
1 = 0. �
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