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Abstract: Specifying quality requirement is integral to any sourcing relationship, but vague and ambiguous specifications can
often be observed in practice, especially when a buyer is in the initial stage of sourcing a new product. In this research, we study a
supplier’s production incentives under vague or exact quality specifications. We prove that a vague specification may in fact motivate
the supplier to increase its quantity provision, resulting in a higher delivery quality. Vague quality specification can therefore be
advantageous for a buyer to screen potential suppliers with an initial test order, and then rely on the received quality level to set more
concrete quality guidelines. There is a degree, though, to which vague quality specification can be effective, as too much vagueness
may decrease the supplier’s quantity provision and hence the expected delivery quality. © 2013 Wiley Periodicals, Inc. Naval Research
Logistics 60: 222–236, 2013
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1. INTRODUCTION

Specifying quality requirements is an important consid-
eration in almost all business transactions. Although firms
strive to set comprehensive and exact quality requirements,
incomplete and vague requirements are prevalent in the busi-
ness world. Williamson [42] proclaims that “all contracts are
incomplete and imperfect documents” and that firms often
prefer private ordering (i.e., voluntary agreements) to court
system to resolve such issues, Tirole [41] holds a similar
sentiment by pointing out that “many contracts are vague
or silent on a number of key features.” Recently, Ariely [2]
also argues that incomplete and vague requirements can in
fact be beneficial to firms. Anecdotal evidence in different
industries suggests that firms may use incomplete or vague
requirements intentionally.

“Honda, often, especially at the beginning of a new prod-
uct line, makes things vague on what the expectations
are in terms of quality. For instance, they do not spell
out the exact level of drag of a hinge as it closes and
opens.” A manager at Honda later explained that this ini-
tial vagueness actually helps them “push new standards
or increased quality level”. Choi and Hong [9].

In contrast, our discussion with former process engineers
in the industrial diamonds industry suggests that the preva-
lence of vague quality requirements (for tooling equipment)
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is largely unintentional, partly because they do not know in
advance what quality standards are most appropriate. Such
vagueness in quality requirements sometimes does result in a
contentious supplier relationship when the supplier’s prod-
ucts are rejected due to “realized” quality standards. The
suppliers may tolerate such vague quality requirements if the
residual value of sustaining the relationship with the buyer is
significant, for example, a promise of more future businesses.
Similar observations can also be found in the textile indus-
try, where vague quality requirements are often observed
due to the subtlety and complexity of fabric production
process.1

“A majority of the quality problems in the textile indus-
try can be traced back to yarn quality parameters such
as evenness, imperfections, count variations, hairiness
and strength. Yet, often companies dealing with yarns
or yarn-based products may not understand enough
about yarn and fiber quality to define their requirements
clearly. This vague situation creates great economic
inefficiencies in sourcing: the quality levels are either
too low or too high.” (Uster Technologies [1]).

Regardless of whether firms set vague quality require-
ments intentionally or not, the broad issue of specifying

1 In a multitier textile processing supply chain, however, the buyer
may not be in a strong legal position to reject the supplier’s qual-
ity provision. In such cases, vague quality requirements are often
subsumed by industry standards.
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quality requirements is an important area of study. This is
especially the case when quality requirements interact with
supplier’s incentives to improve delivery quality. Given that
firms almost always want suppliers to exert effort to improve
quality, we believe it both important and relevant to identify
alternative levers that firms may use to incentivize suppliers
to improve delivery quality. In this article, we focus on how
vagueness in quality requirements influences the supplier’s
delivered quality level, that is, the expected quality level of
those units actually delivered by the supplier.

To set our work on a concrete footing, it is instructive to
consider how one might apply our work in the initial stage of a
supplier selection process. Suppose a buyer wishes to source
a particular component or product from some potential sup-
pliers whose cost structures and/or process capabilities are
not completely transparent to the buyer. Instead of investing
significant time and effort upfront to profile each supplier and
then write a comprehensive contract, the buyer may simply
approach these suppliers with some vague quality require-
ments for a small test order. The buyer may then examine
which supplier achieves the highest delivered quality level
ex post, and subsequently work with this particular sup-
plier for regular orders with a more precise set of quality
requirements.

From a practice point of view, the above approach applies
to situations where the specifiability of goods is low, that is
“items that do not have clearly defined attributes that compet-
ing suppliers can translate into unambiguous specifications.”
(Beall et al. [5]). In fact, ambiguous specifications are fre-
quently encountered in different purchasing contexts across
many different industries. A comprehensive study by Cen-
ter for Advanced Purchasing Studies, for example, noted that
“one of the most common supplier complaints concerning e-
RAs [reverse auctions] was the lack of clear specifications and
rules from the buying firm.” (Beall et al. [5]) Our modeling
framework is therefore particularly appropriate in the RFxs
stage, which is often considered a critical step in evaluating
potential suppliers (Monczka et al. [30]).2

The above framework also applies even if the buyer per-
fectly knows its desired requirements a priori. By not reveal-
ing its true requirements to suppliers, the buyer may create
sufficient incentives for some suppliers to exceed its original
expected delivery quality level. It is worth pointing out that we
are not the first to observe that vague requirements may pos-
itively incentivize suppliers. Gal-Or et al. [16], for example,

2 RFxs refer to several variants of supplier screening approach, such
as RFP (request for proposal), RFQ (request for quotation), or RFS
(request for sample). An RFP “may only detail the end use or per-
formance characteristics of the needed item and ask the supplier to
propose specifically how they would satisfy these needs” (Beall et
al. [5]). Our model can be seen as a variant of RFP (with sample
production request) or RFS (with ambiguous specifications).

study whether a buyer should reveal its true requirements
(valuation) to suppliers, but they focus on whether the buyer
should approach suppliers sequentially or simultaneously to
incentivize suppliers to reduce their prices.

In cases where the buyer truly does not know its require-
ments in advance, Terwiesch and Loch [40] and Wolinsky
[43] characterize how vagueness in buyer’s requirements
incentivizes (or disincentivizes) the supplier’s effort in pro-
viding customized products to the buyer. In particular, Terwi-
esch and Loch [40] study the optimal number of prototypes
the supplier should build and how much it should charge the
buyer, whereas Wolinsky [43] focus on the supplier’s optimal
consultation fee when the buyer performs a sequential search.
Our work complements the above research by focusing on
how vagueness in quality requirements may motivate the sup-
plier to improve the expected delivery quality via production
lot-sizing decisions.

1.1. Research Perspective

Throughout the article, we adopt the convention that a
higher quality is more desirable to the buyer, and the term
quality may either refer to conformance quality (for exam-
ple, tolerance level) or performance quality (for example,
smoothness of ball bearings). We focus on situations where
quality dimension is known and measurable, but the buyer’s
quality specification may be vague. This could be the case,
for example, when an exact specification is possible but is
complex to stipulate and costly to manage. We do not study
scenarios where the quality itself cannot be measured or the
buyer is unsure of what quality dimensions to measure. Such
scenarios can be found in the noncontractibility literature,
and we refer the interested reader to Baiman et al. [3] and
references therein for more details.

In this research, we do not study supplier-buyer interac-
tions from a game-theoretic approach; instead, we focus on
the effect of specification vagueness on supplier’s quality
provision. The supplier may meet the buyer’s quality spec-
ifications (either exact or vague) in several different ways:
(1) improve the capability of its production process, (2) set
quantity provisions by producing more and only deliver the
fraction of output with better quality, or (3) perform post pro-
duction repairs and rework to bring the quality up to the target
standard. Our focus is the second approach, that is quantity
provisions. If the supplier’s production process is constrained
by technology limitations, such as in automobile, semicon-
ductor, industrial diamonds, and biochemical industries, then
the first approach can be costly. On the other hand, repair and
rework may not be feasible for certain products: repair and
rework on industrial pipe flanges, for example, are often pro-
hibited because they may weaken the structural integrity of
the flange.
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Quantity provision is a common practice used in many
different industries when there exist quality variations, and it
is often referred to alternatively as reject allowance (Levitan
[27]), overplanning in material requirements planning (MRP)
with uncertain quality (Murthy and Ma [32]), hedging or yield
factor in MRP/MRPII (Mula [31]), and it is also somewhat
related to MLPO, that is, multiple lot-sizing production to
order (Grosfeld-Nir and Gerchak [17]). Note that in practice
firms are often reticent about quality problems (and hence
quantity provision strategies), perhaps due to brand image or
competitive concerns. Nevertheless, there is evidence that
suppliers do use quantity provisions to cope with quality
variations (ERG [14]), and that suppliers’ quality provision
decisions often do respond to perceived quality requirements
(BCG [4]).

In closing, we note that in theory one can always raise
the target quality level with exact specifications, such as
imposing tighter tolerance level, but this may not be eas-
ily implemented without knowing precisely the supplier’s
detailed cost structure and production capabilities. On the
other hand, one can also pay for higher quality, that is, pay
more per unit for higher quality levels. This is certainly a
reasonable approach, albeit at a higher procurement cost. In
contrast, our primary focus is to study ceteris paribus, that
is, with same procurement cost, the effect of specification
vagueness on expected delivery quality levels.

1.2. Literature

Although not a focus here, production capability improve-
ments and repair/rework are well-studied in the literature and
they form two important classes of quality control problem
in many industries.

Reyniers and Tapiero [36, 37] explore various operational
levers, for example, pricing, penalties for defects, and war-
ranty terms, that a buyer can use to induce the supplier to
improve the quality of its production process. Sheopuri and
Zemel [38] also consider a similar problem, but they focus
on remedial actions by the buyers, that is, individual versus
class actions. From a somewhat different angle, Hwang et al.
[22] consider the effect of two operational levers, appraisal
and certification, that a buyer might adopt to improve sup-
ply quality. They argue that appraisal (inspection) may not
be desirable because it can cause the supplier to perform
excessive or unwanted preemptive inspections that increase
the supply chain’s cost. A common assumption made in the
above research is that the supplier’s quality is perfectly con-
tractible and that the buyer knows the supplier’s “cost of
quality,” that is, the effort required to reach a certain qual-
ity level. In contrast, Baiman et al. [3], Lim [28], and Kaya
and Özer [24] study a buyer’s contract design problem when
the supplier’s “cost of quality” is not observable by the
buyer. This stream of literature mainly focuses on contract

design, for example, price rebate, inspection, and sales price
commitment, to improve the supply quality.

The existing research on repair and rework mainly focuses
on the optimal inspection and repair policies in a dynamic
production system. This stream of literature often consid-
ers the inspection policy jointly with procurement decisions
in a production and inventory system, see for example Brit-
ney [7], Lee and Rosenblatt [26], Peters et al. [34], Ou and
Wein [33], and Chen et al. [8]. They study the joint replenish-
ment and quality screening policy when there exist lot-by-lot
quality variations. We refer the interested reader to Yao and
Zheng [45] for a comprehensive treatment of optimal inspec-
tion policies in a dynamic inventory-production system. The
random yield and uncertain supply literature, for example,
Dada et al. [10], Dong and Tomlin [11], Kazaz and Webster
[25], Liu et al. [29], Swinney and Netessine [39], and Yano
and Lee[44], is also related to supply quality problem, but
the main thrust of that literature is finding optimal procure-
ment and inventory policies, assuming that the yield or supply
distribution is exogenous.

More generally, our work is also related to the incomplete
contract literature. Some key motivations for the incom-
plete contract literature include unforeseen contingencies and
transaction cost, such that the buyer and the supplier may not
be able to incorporate all future contingencies into the con-
tract or the cost of writing a completely contract and enforcing
it through the court is prohibitively high. Some influential
earlier work on incomplete contract includes Grossman and
Hart [18] (share of property rights), Hart and Moore [20,21]
(renegotiation and limited property rights), and Williamson
[42] (decision rights), among others. We refer the interested
reader to Tirole [41] for a detailed critique of the incomplete
contract literature.

One could view our setting as a special case of an incom-
plete contract in which the supplier does not have renegotia-
tion power ex post and the buyer holds all decision rights. Our
work, however, differs fundamentally from the incomplete
contract literature in terms of economic rationale: we allow
the buyer to institute “incomplete contract” without invoca-
tion of transaction costs concerns. In other words, the buyer
could choose to use an incomplete contract even if all future
contingencies can be exhausted (and hence incorporated into
the contract) without significant transaction costs. As a side
note, our work is also tangentially related to the fuzzy deci-
sion making literature where fuzzy concepts are modeled by
a deterministic membership function, see Bellman and Zadeh
[6].

Our research complements the existing literature by study-
ing how specification vagueness influences the supplier’s
quantity provision and the consequent expected delivery
quality. As alluded to in the introduction, one key advan-
tage of vague specification is that the buyer does not have to
incur upfront cost to learn precisely about the supplier’s “cost
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of quality” to incentivize the supplier to increase quantity
provision and the expected delivery quality. This is par-
ticularly useful when the buyer is in the initial stage of
supplier selection process, in which important information,
such as supplier’s cost and capability, may not be readily
available.

We prove that under certain conditions the buyer may be
better off with a vague quality specification. We find that all
else being equal a vague specification is more attractive if
the supplier has a less reliable production process, whereas
an exact specification is more attractive if the supplier has a
more reliable process. One important implication of our find-
ings is that contracting complexity in supply quality may not
always be a problem: the buyer may in fact receive a higher
delivery quality with vague quality specifications, even if an
exact specification is possible. Our results also make a weaker
requirement on the buyer’s knowledge in supplier’s precise
cost structure and production capability, which facilitates the
buyer’s initial supplier selection process. By introducing a
“proneness to low quality” index in the supplier’s produc-
tion capability (quality), the buyer may use some benchmark
index to determine whether it is desirable to use vague spec-
ification. Our findings also indicate that there is a degree to
which specification vagueness is beneficial, too much vague-
ness can decrease the supplier’s quantity provision and hence
decrease the expected delivery quality.

The rest of this article is organized as follows. We describe
the model in Section 2 and introduce some preliminary analy-
sis in Section 3. The effect of specification vagueness is
analyzed in Section 4. We conclude in Section 5. All proofs
are contained in Appendix.

2. MODEL

Consider a supplier that needs to deliver q amount of output
to a buyer. The supplier’s production process is imperfect, that
is, when the supplier launches a production run, the quality
of its output can be described by a certain class of distribution
functions. The exact form (e.g., parameters) of the realized
quality distribution can vary depending on random factors
(denote as ε), such as temperature, humidity, chemical impu-
rity, and material variations, that may influence the supplier’s
production process.

Let Fε(x) describe the fraction of output that has a quality
level less than x, conditional on the realized random factors
ε. Define Fε(x) = 1 − Fε(x). If the supplier launches a
production lot size of Q, the amount of output that exceeds
quality level x is QFε(x). This implies that the fraction of
the output that exceeds a certain quality level is invariant to
the production lot size, although the amount of the output that
exceeds a certain quality level is increasing in the lot size Q.
The above random quality model is a direct extension of the

commonly used stochastic proportional random yield model,
which “applies to circumstances where yield losses occur
because of limited capabilities of the production system.”
(Yano and Lee [44])

2.1. Quality Expectations

The buyer has certain expectations on the minimum qual-
ity level l and it will only accept the fraction of the supplier’s
delivery with quality level greater than l. The buyer may use
an exact quality specification by setting a fixed minimum
quality level l = l such that it will only accept the fraction of
the supplier’s delivery with quality level x ≥ l and reject the
rest. Alternatively, the buyer may use a vague quality speci-
fication by being somewhat vague about the exact values of
the minimum quality level l, and, in this case, the buyer may
reject a portion of the supplier’s delivery even if the qual-
ity of that portion exceeds l, and vice versa. Our adoption
of minimum acceptance quality level is driven by the notion
that a higher quality is more desirable, which is advocated by
quality management pioneers including Taguchi and Deming
and widely recognized in practice (Evans and Lindsay [15]).
Our adoption of the minimum quality level, however, does
not imply one-sided specification only, see Remark 1 below.

REMARK 1: One needs not to construe the minimum
quality level l as one-sided specification only: it can also rep-
resent two-sided specification such as a tolerance interval.
Suppose that an exact specification for a hinge’s damping
ratio is 1.200 ± 0.020, then one can define x = 0.040 − |ζ −
1.200| (where ζ is the actual damping ratio) and set l = 0.020
such that the buyer will only accept the fraction of delivery
with quality level x ≥ l, that is, ζ ∈ 1.180–1.220. In contrast,
with vague specification l can be greater or less than 0.020
such that the buyer may accept deliveries within a wider or
tighter tolerance interval.

REMARK 2: Conceptually, the minimum quality level l

can also capture uncertain, two-sided target specifications.
Suppose the buyer is unsure about a hinge’s ideal damping
ratio, but it can tell (on seeing the delivery) whether the actual
damping ratio is close to ideal, where the buyer may use crude
measures such as likert scale (e.g., “1. not close at all”, “2.
slight close,” “3. somewhat close”, “4. very close,” and “5.
extremely close”) to describe the quality distance between
actual and ideal target specifications. Let x and l denote (the
inverse of) the actual and specified quality distances (e.g.,
numerical values associated with likert scale), respectively,
then only those delivery with quality level x ≥ l will be
accepted. With exact specification, for example, the buyer
may set a fixed l = 4 such that only those delivery with
quality distance “very close” or “extremely close” will be
accepted. On the other hand, the buyer may be vague about
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l such that it may accept “somewhat close” and above, but
may also accept “extremely close” only.3

For vague specification, the minimum quality level l is
uncertain, and, in this case, let G(·) denote the distribution
of l. Note that G(·) can also describe the exact specification
as a special case: G(l) = 1 for any l ≥ l and G(l) = 0 for
l < l. To make G(·) more concrete, we illustrate a particular
functional form below. Such a functional form, however, is
not required for subsequent analysis. Let

G(l) = 1

2

(
1 + erf

[
l − l

σ
√

2

])
, (1)

where erf(·) is the standard error function and σ cap-
tures the vagueness of the quality specification. Note that
limσ→0 G(l) = Hl(l) = H(l − l), where H(·) is the Heav-
iside step function (assuming H(0) = 1). This corresponds
to exact specification where the minimum quality level is
set at l. In contrast, if σ > 0, then G(l) is greater than
0 and less than 1 for any quality level l, although G(l)

approaches to 1 for sufficiently high-quality level l. This cor-
responds to vague specification, where there is a 50-50 chance
that the minimum quality level is l. The vague specifica-
tion described here can be viewed as a symmetric adaptation
of the “anchoring-and-adjustment” approach introduced by
Einhorn and Hogarth [13].

The supplier could form a crude estimation of G(·) based
on the buyer’s implicit (albeit vague) quality requirements,
as well as its past knowledge with other buyers and general
industry/market benchmarks. For example, the supplier could
estimate that a tolerance level of xi may be accepted with
probability yi for i = 1, . . . , n, given that industry benchmark
is x̄ and the particular buyer “seems tougher” than other buy-
ers. These crude estimations can subsequently be combined
to statistically find the most likely distribution for G(·).

2.2. Production Cost and Revenue

To satisfy the buyer’s delivery requirement (quantity and
quality), the supplier sets a production lot size Q ≥ q,
that is, the supplier anticipates its quality risk and therefore
builds quantity provisions by launching a larger than required
production run. We assume that the supplier makes one pro-
duction run and it has to commit to the production quantity Q

before observing actual quality realizations. This can be the
case, for example, when the buyer’s initial test order is small,
the setup cost is prohibitively high, the lead time is long, or
the product life cycle is short.

3 This conceptual framework requires that the supplier and the buyer
share a similar perception about what is “ideal.” Such similar per-
ception may be established, for example, through their prior working
relationships. Otherwise, without a similar perception the notion of
exact specification (by definition) is not meaningful.

The supplier’s unit production cost is c, and the buyer pays
a unit wholesale price w > c for the (accepted) supplier’s
delivery. In addition, the supplier incurs a linear penalty cost
of p for the fraction of the output that fails to meet the buyer’s
quality expectations. Leftovers of the supplier’s output is sal-
vaged at a unit value of s(x) < c, where s ′(x) ≥ 0 and
s ′′(x) ≤ 0, that is, the salvage value is concave increasing in
quality level x. To avoid the trivial case where salvaging a
product is more profitable than selling to the buyer, we need
the following assumption.

ASSUMPTION 1: (w+p)G(x)−s(x) is nonnegative and
increasing in quality level x.

For a given unit with quality x, the probability of accep-
tance is G(x) and so (w + p)G(x) is the expected payoff.
Hence, Assumption 1 says that the expected payoff of selling
a unit is greater than salvaging it, and that as quality level x

increases, it is increasingly better to sell than to salvage.
Assumption 1 is not required when x < l under exact

specification, or, when salvage value is independent of qual-
ity level (i.e., s ′(x) = 0). The latter may be the case, for
example, when the product is customized or when salvage
value mainly derives from material cost.

2.3. Allocation Policy

After production is finished, the supplier observes the real-
ized quality distribution Fε(·) and then allocates a fraction of
its output Q to satisfy the delivery requirement q. Allocating
the best q units to the buyer is a reasonable policy, but depend-
ing on the buyer’s quality expectations such a policy may or
may not be optimal for the supplier. Hence, in what follows
we describe a generic allocation policy first and characterize
the optimal policy later.

Let [0, Q] be the set of output ranked in ascending qual-
ity order. An allocation rule πε over [0, Q] defines a subset
Aπε ⊆ [0, Q] such that πε(y) = 1 for any y ∈ Aπε and
πε(y) = 0 for any y 	∈ Aπε , that is, πε indicates the sub-
set Aπε for delivery to the buyer. For an arbitrary allocation
rule πε , Aπε can be a collection of disjoint subsets, that is,
Aπε = ∪iA

πε

i , where A
πε

i = [a0
i , a1

i ] and 0 ≤ a0
i ≤ a1

i ≤ Q.
In addition, Aπε needs to satisfy the delivery requirement q,
that is, |Aπε | = ∑

i |Aπε

i | = ∑
i (a

1
i − a0

i ) = q. See Fig. 1 for
an illustration. Note that any feasible allocation is completely
determined by �a = (. . . , a0

i , a1
i , . . .), and we will characterize

�a after describing the supplier’s problem.

2.4. Summary and Problem Formulation

2.4.1. Summary of Notation

• q: buyer’s delivery quantity requirement (order quan-
tity).

• Q: Supplier’s production quantity.

Naval Research Logistics DOI 10.1002/nav



Wang: Specification Vagueness and Supply Quality Risk 227

Figure 1. An illustration of an arbitrary allocation policy.

• ε: Random production shocks.
• Fε(x): Fraction of the supplier’s output with quality

level less than x.
• πε : Allocation policy for a realized production shock

ε.
• Aπε : Subsets of output delivered to the buyer accord-

ing to allocation policy πε .
• l: Minimum quality level imposed by the buyer.
• G(·): Distribution function of the minimum quality

level l.
• c: Supplier’s unit production cost.
• w: Unit wholesale price paid (for accepted units) by

the buyer to the supplier.
• p: Unit penalty cost incurred by the supplier for unmet

delivery quantity requirement.
• s(x): Unit salvage value for a given quality level x.

2.4.2. Sequence of Events

1. Supplier learns procurement requirement q and the
quality requirement G(·).

2. Supplier sets production lot size Q before observing
production shocks ε.

3. After production is finished and ε is realized, supplier
observes realized quality distribution and determines
an allocation policy πε .

4. Supplier delivers q units (if available) to the buyer
according to the allocation scheme Aπε , receives
unit revenue w for the fraction accepted, incurs unit
penalty p for the fraction (if any) that is rejected, and
salvages the leftovers at a unit value of s(·).

2.4.3. Problem Formulation

The supplier’s expected profit for any given allocation
policy πε is

v(Q|πε) = Eε

∫
x

(
w

∫
y∈Aπε

1
(
F−1

ε (y/Q) ≥ x
)
dy

− p

∫
y∈Aπε

1
(
F−1

ε (y/Q) < x
)
dy

)
dG(x)

+ Eε

∫
y 	∈Aπε

s
(
F−1

ε (y/Q)
)
dy − cQ, (2)

where 1(·) is an indicator function such that 1(χ) = 1 if χ

is true and 0 otherwise, and F−1
ε (y/Q) describes the quality

level associated with the yth unit (ranked by quality) among
Q. In (2), the first two terms capture the expected revenue for
accepted units and expected penalty cost for rejected units,
respectively, and the third term captures the expected salvage
value, which depends on the supplier’s allocation scheme Aπε

and associated quality levels.4

3. PRELIMINARIES

3.1. Optimal Allocation Policy

The following proposition proves that, as one might expect,
allocating the best q units is optimal under vague, but not
necessarily exact, specification.

PROPOSITION 1: Suppose Assumption 1 holds. Let
[0, Q] be the set of output ranked in ascending quality order.
(a) The optimal allocation policy πε defines a single sub-
set Aπε ⊆ [0, Q]. (b) The optimal subset Aπε is defined
by a single vector �a = (a0, a1) such that a1 = a0 + q.
(c) Under exact specification, the optimal allocation sets
a0 = min{Fε(l)Q, Q − q}. (d) Under vague specification,
the optimal allocation sets a0 = Q − q, that is, it is optimal
to allocate the best q units.

Part (a) of Proposition 1 proves that there is no gap in the
optimal allocation, and the explicit form of which is given
by part (b). Part (c) tells us that, with exact specification, the
supplier does not necessarily allocate the best q units to the
buyer; instead, the supplier allocates the output in ascend-
ing quality order starting with the unit that just meets the
buyer’s quality specifications. In contrast, part (d) says that
the supplier always allocates the best q units under vague
specification. Hence, for any given production lot size Q, the
expected quality in vague specification weakly dominates that
in exact specification.

3.2. Structural Property of the Supplier
Objective Function

Leveraging part (b) of Proposition 1, we can rewrite
(2) as

4 In (2), the supplier incurs a penalty cost (but not salvage value)
on the fraction of q units delivered to the buyer but failed to meet
the quality expectations. This is the case when penalty cost sub-
sumes salvage value. If both salvage values and penalty costs are
simultaneously incurred on rejected units, then (i) if s ′(x) = 0 all
results continue to hold, and (ii) if s ′(x) > 0 all results in Section
4.1 continue to hold, but subsequent analysis in Sections 4.2 and 4.3
becomes intractable.
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v(Q|πε) = Eε

∫
x

(
w

∫ a0+q

a0

1
(
F−1

ε (y/Q) ≥ x
)
dy

− p

∫ a0+q

a0

1
(
F−1

ε (y/Q) < x
)
dy

)
dG(x)

+ Eε

∫ a0

0
s
(
F−1

ε (y/Q)
)
dy

+ Eε

∫ Q

a0+q

s
(
F−1

ε (y/Q)
)
dy − cQ. (3)

In what follows, we characterize the supplier’s optimal pro-
duction decision under vague specification. The analysis of
exact specification is somewhat similar, and, for succinctness,
we do not present the details here but they can be found in
the Appendix. Leveraging part (d) of Proposition 1, we prove
that the supplier’s objective function (3) is well-behaved.

PROPOSITION 2: Suppose Assumption 1 holds. With
vague specification, the supplier’s objective v(Q|πε) is con-
cave. Furthermore, the optimal (interior) production lot size
satisfies

Eε

[
(w + p)

∫ F−1
ε (1)

F−1
ε (1−q/Q)

F ε(x)dG(x)

+
∫ 1−q/Q

0
s
(
F−1

ε (z)
)
dz + (q/Q)s

(
F−1

ε (1 − q/Q)
)] = c.

(4)

Proposition 2, and particularly expression (4), helps to
investigate the implications of specification vagueness on
the supplier’s optimal production decisions and the expected
delivery quality.

4. IMPLICATIONS OF VAGUENESS IN QUALITY
SPECIFICATION

In this section, we study the implications of exact and vague
specifications on the supplier’s expected delivery quality. For
any given production quantity Q, define the expected delivery
quality under vague specification as

τ(Q) = Eε

∫ Q

Q−q

F−1
ε (y/Q)dy. (5)

Similarly, for any given Q, the expected delivery quality
under exact specification is τE(Q) = Eε

∫ min{Fε(l)Q+q,Q}
min{Fε(l)Q,Q−q}

F−1
ε (y/Q)dy. All else being equal, then, τ(Q)−τE(Q) ≥ 0,

which is consistent with our earlier observation that the
expected delivery quality under vague specification weakly
dominates that under exact specification. For notational ease,
we simply use τ (τE) to denote the expected delivery quality
under optimal production quantity. Note that τ depends on
quality specification G(·) through (4).

4.1. General Properties

We first study whether the supplier will choose a suffi-
ciently large production lot size Q to guarantee that at least q

units will satisfy the minimum quality level l. The following
proposition suggests that an exact specification cannot guar-
antee (a sufficiently large Q such that) at least q units exceed
quality level l, but a vague specification may lead to at least
q units exceeding quality level l.

PROPOSITION 3: Suppose the random production shocks
ε is nondegenerate, that is, ε is not deterministic. (a) With
exact specification, there exist some realizations of ε such
that Fε(l) < q/Q. (b) With vague specification, the supplier
may choose a production lot size Q such that Fε(l) ≥ q/Q

for any realization of ε.

Part (a) of Proposition 3 says that the supplier’s quan-
tity provision will be insufficient to fully satisfy the delivery
requirement under exact specification, that is, a fraction of
delivery (for some realized ε) will not satisfy the buyer’s qual-
ity specifications. Although it may seem counter-intuitive at
first, this is not surprising: the supplier needs to balance the
cost of a larger production run (to increase delivery qual-
ity) with the benefit of a smaller run (but with some quality
penalty cost). In contrast, part (b) says that with vague specifi-
cation the supplier may choose a sufficiently high-production
lot size Q such that the delivery quality (of q units) always
exceeds l.

REMARK 3: Part (b) of Proposition 3 is an existence
result, and additional conditions are required for part (b) to
be nonvacuous and comparable to part (a). In particular, let
εl and εh denote the production shocks that result in least
and most favorable quality outputs, respectively. Define Q̂ as
the unique solution to F−1

εl
(1 − q/Q̂) = l. Then, following

the proof of Proposition 3 (see Appendix), a sufficient con-
dition for part (b) to be nonvacuous is F−1

εh
(1 − q/Q̂) < ∞

and G(F−1
εh

(1 − q/Q̂)) < 1, that is, the quality level of the
qth unit (ranked in descending quality order) is finite, and
there is a positive probability that the minimum quality level
imposed by the buyer may be greater than the quality of the
qth unit. If in addition G(·) is symmetric with mean l, then
part (a) and (b) of Proposition 3 are comparable as they have
identical expected quality level l. These conditions are fairly
reasonable: Eq. (1), for example, readily satisfies the above
conditions.

With some vague specification, then, the supplier may
always have more than q units with quality level exceed-
ing l. Note that this does not guarantee that all q units will
be accepted by the buyer, because the minimum quality level
imposed at delivery can be greater than l. The buyer may
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Figure 2. Mean varying spread of vague specification.

therefore still incur a quantity shortage despite the fact that all
q units exceed quality level l. Nevertheless, having more than
q units exceed quality level l is more desirable to the buyer,
who could subsequently use such higher (and achievable)
quality standard for its regular orders with the supplier.

We note that Proposition 3 does not imply that vague spec-
ification always leads to a higher expected delivery quality
than the exact specification does. It is possible that in vague
specification a fraction of delivery will never satisfy l even
under the most favorably realized ε. Hence, from the buyer’s
perspective, vague specification may or may not outperform
exact specification, depending on system parameters.

The key to a more precise understanding of specification
vagueness lies in characterizing how specification vagueness
affects the optimal production quantity Q, as the expected
delivery quality τ(Q) is a monotone increasing function in
Q. It is worth pointing out, however, that with exact specifi-
cation the expected delivery quality may not increase in Q,
because the supplier may not always allocate the best q units
(Proposition 1(c)). This can have a magnitude, but not direc-
tional, impact on Proposition 4 in next section under certain
conditions, see proof of Proposition 4 for more details.

In what follows, we consider two distinct classes of vague
specification: Ĝ(·) being a mean-varying spread of G(·) and
Ĝ(·) being a mean-preserving spread of G(·).

4.2. Vague Specification through Mean Varying Spread

Let Ĝ(·) be a mean-varying spread of G(·), such that the
quality requirement prescribed by Ĝ(·) is more uncertain than
that by G(·). We consider two special types of mean varying
spread: lower mean varying spread such that G(·) first-order
stochastically dominates (FSD) Ĝ(·), and upper mean vary-
ing spread such that Ĝ(·) FSD G(·). See Fig. 2 (dashed line
denote Ĝ(·)).

With lower mean varying spread, Ĝ(l) ≥ G(l) for l < l

and Ĝ(l) = G(l) for l ≥ l. Hence, the quality expectation
from the buyer is lower under Ĝ(·) than that under G(·). Con-
versely, with upper mean varying spread, Ĝ(l) = G(l) for

l ≤ l and Ĝ(l) ≤ G(l) for l > l. Hence, the quality expecta-
tion is higher. One therefore expects that all else being equal
the expected delivery quality is lower in the former case and
is higher in the latter case.

PROPOSITION 4: All else being equal, (a) a lower mean
varying spread in G(·) decreases the expected delivery qual-
ity. (b) An upper mean varying spread in G(·) increases the
expected delivery quality.

The above proposition tells us that an upper mean vary-
ing spread increases in the expected delivery quality. This
is not surprising because in this case the quality expectation
from the buyer is higher under Ĝ(·) than that under G(·).
This result is consistent with the fact that in this case Ĝ(·)
first-order stochastically dominates G(·). Proposition 4 sug-
gests that all else being equal an upper mean varying spread
in specification vagueness is more effective in motivating the
supplier to increase production quantity provision and hence
the expected delivery quality.

In what follows, we study the more interesting (and more
challenging) question of whether specification vagueness is
still attractive when the mean quality expectation is identical
between the exact and the vague specification.

4.3. Vague Specification through Mean
Preserving Spread

Let Ĝ(·) be a mean-preserving spread of G(·), such that
G(·) second-order stochastically dominates (SSD) Ĝ(·), that
is, the quality requirement prescribed by Ĝ(·) is more uncer-
tain than that by G(·). Figure 3 depicts two classes of mean
preserving spread: the elementary increase in vagueness (Fig.
3a) and the more general SSD case (Fig. 3b).

The elementary increase in vagueness is a fairly special
type of mean-preserving spread, so we omit its analysis here
and focus instead on the general mean preserving spread case.
A detailed treatment of the elementary increase in vagueness
can be found in an unabridged version of the article. Note
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Figure 3. Mean preserving spread of vague specification.

that the analysis of elementary increase in vagueness does
offer a useful hint: the curvature (e.g., concave or convex)
of the quality distribution Fε(·) has a significant impact on
the expected delivery quality. For general mean-preserving
spread, it turns out, we need a more nuanced measure (other
than concavity or convexity) to describe the curvature of
Fε(·).

DEFINITION 1: For any given quality distribution Fε(x),
define kF (x) = − d

dx
log fε(x) as proneness to low-quality

outcome (PLQ), where fε(x) is the derivative of Fε(x) with
respect to x.

The measure kF (x) describes the curvature of Fε(x), and it
is also commonly known as absolute risk aversion (Pratt [35])
in the utility function context. A higher kF (x) is associated
with a higher fractile of low quality output, that is, is more
prone to low-quality outcome. A particularly useful family of
distribution functions is the one that exhibits constant PLQ,
that is, kF (x) = λ, where λ can be positive or negative. This
family of quality distribution serves as a useful benchmark
such that we can partially characterize effect of specification
vagueness even if Fε(·) does not exhibit constant PLQ.

In this section, we focus on the class of mean preserving
spreads such that G(·) and Ĝ(·) cross only once, where Ĝ(·)
is a mean-preserving spread of G(·). We refer to G(·) and
Ĝ(·) as simply related (Hammond [19]), which is also known
as second-order stochastic dominance with tail-dominance
(Eeckhoudt and Hansen [12]), or simply referred to as single-
crossing mean preserving spread. The above definition is
easily satisfied, for example, when G(·) satisfies (1) and Ĝ(·)
is generated by setting σ̂ > σ in (1). When the two distrib-
utions are simply related, let Ĝ(·) �L G(·) denote the fact
that all else being equal a low-quality delivery is more likely
to be accepted by Ĝ(·) than by G(·).

The following proposition tells us that there exists a thresh-
old level of PLQ, λ, such that increasing specification vague-
ness leads to higher quantity provision and hence higher

expected delivery quality for any production process with
a PLQ greater than λ (less capable). Let τĜ and τG denote
the expected delivery quality (see (5)) under quality require-
ments Ĝ(·) and G(·), respectively. In addition, define lA as
the first point where dĜ(l) − dG(l) changes sign from posi-
tive to negative at l = lA. Similarly, define lB as the last point
where dĜ(l)− dG(l) changes sign from negative to positive
at l = lB .

PROPOSITION 5: Suppose kF (x) = λ and Ĝ(·) �L G(·).
(a) If F−1

ε (1 − q/Q) < lA, there exists a λ > 0 such that
τĜ > τG for any λ > λ. (b) If F−1

ε (1) > lB , there exists a
λ < 0 such that τĜ < τG for any λ < λ.

Proposition 5 tells us that if the supplier’s quality distri-
bution exhibits significant PLQ (less capable), then a vague
specification may induce the supplier to choose a larger quan-
tity provision with increased delivery quality. Conversely, if
the supplier’s quality distribution does not exhibit much PLQ
(more capable), then a more precise (exact) specification is
more effective.

The following proposition further strengthens Proposition
5 by proving that there exists a unique switching point in PLQ,
such that specification vagueness leads to higher (lower)
quantity provision (and hence higher expected delivery qual-
ity) for any production process exhibiting higher (lower)
PLQ.

PROPOSITION 6: Suppose kF (x) = λ and Ĝ(·) �L G(·).
If (a) F−1

ε (1 − q/Q) < lA, (b) F−1
ε (1) > lB , and (c)

Ĝ(F−1
ε (1 − q/Q)) − G(F−1

ε (1 − q/Q)) < ι where ι is an
arbitrarily small nonnegative constant, then there exists a λs

such that τĜ > τG for λ > λs and τĜ < τG for λ < λs .

Proposition 6 tells us that under the regulatory conditions
(a)–(c), there exists a unique threshold PLQ (λs) such that
a more exact specification is appropriate for any production
process that is less prone to low quality (λ < λs), and a more

Naval Research Logistics DOI 10.1002/nav



Wang: Specification Vagueness and Supply Quality Risk 231

vague specification is effective for any production process
that is more prone to low quality (λ > λs).

Up to now, we have focused on the case where the qual-
ity distribution has a constant PLQ, that is, kF (x) being a
constant. Next, we prove that the above characterization still
holds even if the quality distribution does not have a constant
PLQ.

PROPOSITION 7: Suppose Ĝ(·) and G(·) are simply
related and Ĝ(·) �L G(·). Suppose (a) F−1

ε (1 − q/Q) < lA,
(b) F−1

ε (1) > lB , (c) Ĝ(F−1
ε (1 − q/Q)) − G(F−1

ε (1 −
q/Q)) < ι where ι is an arbitrarily small nonnegative con-
stant, and (d) Ĝ(F−1

ε (1)) ≈ 1. (i) If τĜ > τG with kF1(x),
then τĜ > τG for any kF2(x) > kF1(x). (ii) If τĜ < τG with
kF1(x), then τĜ < τG for any kF2(x) < kF1(x).

Proposition 7 tells us that even if the quality distribution
function does not exhibit constant PLQ, one can still use
the constant case as a benchmark. For example, if the buyer
prefers a vague specification when the supplier’s quality dis-
tribution has a constant PLQ, then the buyer will continue
to prefer vague specification for any quality distribution that
exhibit higher PLQ, even if the buyer does not know the exact
form of the quality distribution. This result is very useful in
situations where it is difficult to precisely assess the supplier’s
quality distribution function.

It is worth pointing out that the above analysis only
partially characterizes the attractiveness of the exact ver-
sus vague specification for a realized production shock ε.
Because ε influences quality distribution’s PLQ outcome
(kF (x)), the buyer’s expected preference toward exact or
vague specification is therefore weighted by the realized
production shocks ε.

In summary, the preceding analysis (Sections 4.1–4.3) par-
tially establishes that all else being equal a vague specification
can be preferred to the exact specification when the supplier’s
quality distribution exhibits more PLQ. Also, it is possible
that a vague specification can achieve 100% quality confor-
mance (i.e., all delivered q units exceed l in quality), which
cannot be achieved by an exact specification. A buyer could
therefore use vague specification to “discover” achievable
quality level in the initial stage of sourcing a new product,
and subsequently use the discovered quality level to set more
exact quality requirements for its regular orders.

Part of the intuition of the above result is that vague spec-
ification keeps the supplier “on its toes,” as the downside
penalty can be significant if the quality requirement turns out
to be high. To mitigate the uncertain aspect of the quality
requirement, the supplier may find it beneficial to produce
somewhat more (and salvage the leftovers) than to produce
less (and incur stiff penalties). This is particularly true when
the supplier’s production cost is low, where the supplier can
afford to ramp up production quantity to meet the buyer’s

quality specifications. Thus, the fact that vague specification
can be attractive is driven by two factors: (1) the supplier’s
production process is prone to low-quality outcomes (because
otherwise it is not necessary for the supplier to build up pro-
duction quantity), and (2) the supplier’s production cost is
not too high (because otherwise it will not be able to afford
quantity provision).

REMARK 4: Although our earlier analysis suggests that
introducing some vagueness to quality specification may
improve the expected delivery quality from the supplier,
too much vagueness (extreme mean preserving spread) will
always result in lower expected quality. This can be seen,
for example, by substituting G(l) = 0.5 (for any l) into (4)
such that the left hand side of (4) is always less than the right
hand side, suggesting that with extreme vague specification
the production quantity Q exactly equals to q (or Q = 0 if
we allow the supplier not to participate).5 In other words, the
supplier does not build in any buffer quantity to reduce the
expected quality shortfall. Part of the intuition is that, with
too much vagueness, the supplier could not reasonably assure
that its delivery will be accepted even if it builds a very large
quantity provision. The supplier in this case may simply “give
up” as opposed to “stand on its toes.”

5. DISCUSSION AND CONCLUSION

We analytically establish in Section 4 that specification
vagueness could motivate the supplier to increase its produc-
tion quantity provision and hence a higher expected delivery
quality. In what follows, we discuss how our results could
be influenced by a number of practical considerations. Note
that for reasons of space, we only summarize our key obser-
vations below. Detailed analytical treatments and numerical
experiments for this section can be found in an unabridged
version of the article.

5.1. Implementation and Scope of Application

As alluded to in the introduction, vague specification can
be effective when the buyer is in the early stage of sourcing a
new product, where precise information about suppliers’ cost
and capability is not readily available. In such cases, specifi-
cation vagueness could help the buyer to discover achievable
delivery quality level, which can subsequently be used to set
more concrete quality requirements for regular production
orders. Our discussion with industry practitioners also con-
firms that vague specifications are more likely to be observed
at early stages of sourcing relationships.

A practical issue with vague specification is how specifi-
cation vagueness G(·) and production capability F(·) could

5 The limit of the mean preserving spread is a uniform distribution.
Using (1), for example, we have limσ→∞ G(l) = 0.5 for any l.
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be inferred by the supplier and the buyer, respectively. As
we discussed in Section 2.1, the supplier could form a crude
estimation of G(·) by synthesizing several sources of infor-
mation: the buyer’s implicit (albeit vague) quality require-
ments, the perceived “toughness” of the buyer, the average
quality requirements from other buyers, and industry bench-
mark reports. If the average quality requirements from other
buyers are highly variable and the focal buyer provides little
guidance, for example, the supplier’s estimation of Ĝ(·) will
have a higher variance (but with the same mean) than what
would have been estimated had the focal buyer stipulated
more precise requirements. This corresponds to the scenario
where Ĝ(·) forms a mean-preserving spread of G(·).

On the other hand, the buyer can easily calculate the PLQ
index if the supplier discloses its production capability infor-
mation F(·). This may or may not happen in practice, and
if not, the buyer could resort to market intelligence reports
to estimate a baseline level F(·) and the corresponding PLQ
index for the general supplier pool. The buyer could then use
such benchmark to gauge whether the particular supplier is
more or less capable than the benchmark one. As our analysis
does not depend on precise forms of F(·), such crude esti-
mation should be suffice for the buyer to decide whether it is
advantageous to adopt vague specification.

Althoughintheoryvaguespecificationcanalsobeusedwith
regular production orders, one may encounter practical and
legal issues implementing vague specification, especially in a
multitiersupplychainwherequalityoftenexhibits interdepen-
dencies among supply chain members. A buyer, for example,
may have difficulty in rejecting a large order from the supplier
(who may initiate legal challenges), or accepting a large order
with vague specification and pass on to its downstream part-
ners for further processing (downstream partners may insist
on clear specifications based on industry standards). As such,
one should view our results with caution when large, regular
production orders are involved and the product is subject to
further processing down the supply chain.

The supplier may also strategically cope with vague spec-
ification with multiple production runs. If the buyer places a
small test order, however, the supplier may find it uneconom-
ical (due to fixed setups) to further split the order for multiple
production runs. This is unlikely to be a concern, therefore, if
vague specification is used within the appropriate guidelines
discussed above. In contrast, if the buyer use vague specifi-
cation for large, regular production orders, the supplier could
thwart the buyer’s vague specification through multiple pro-
duction runs, such that the supplier could deliver an initial
batch and observe the realized acceptance quality level. The
supplier can then produce all subsequent batches using the
observed quality level, just as if the buyer has stipulated an
exact quality requirement. This is somewhat similar to the
scenario described in Terwiesch and Loch [40], in which the
supplier builds “prototypes” for the buyer.

5.2. Supplier Improvement Effort

Besides quantity provision, the supplier can also invest
in equipment, training, and research and development to
improve process reliability or quality distributions to meet
the buyer’s quality requirement. Using the notion of the first-
order stochastic dominance, we find that the supplier’s opti-
mal improvement effort is in general not monotonic in spec-
ification vagueness. Nevertheless, we observed that, when
production cost is high and production is prone to low-quality
outcomes, the supplier may exert quite significant efforts to
improve its production process under vague specification.
Hence, vague specification can be quite effective to moti-
vate the supplier to improve production process when it has
higher cost and low reliability.

Although it is intuitive that any improvement effort by the
supplier can lead to improved delivery quality, it is unclear
whether a higher improvement effort always yields higher
return on expected quality, because the supplier may subse-
quently build less quantity provision due to increased reli-
ability. We find that, with exact specification, even if the
supplier exerts significant improvement effort, such improve-
ment effort does not translate into higher expected delivery
quality. The reason is that the supplier trades off improvement
effort with production quantity provision: a higher improve-
ment effort allows the supplier to reduce its quantity provision
and yet achieve similar quality level. In other words, with
exact specification the benefit of improvement effort mainly
accrues to the supplier.

In contrast, with moderate specification vagueness (or even
significant specification vagueness when production cost is
low), supplier’s improvement effort yields more pronounced
quality benefits. We find that a moderate amount of specifi-
cation vagueness can be quite beneficial. Therefore, even if
specification vagueness may not lead to a large improvement
effort, it extracts more “value” from the supplier, resulting in
higher delivery quality. To summarize, we find that increas-
ing specification vagueness typically do not always spur the
supplier’s improvement effort, but a moderate amount of
specification vagueness seems to be a quite robust choice
to improve delivery quality.

5.3. Pay a Premium or Subsidy for Quality

One might conjecture that the buyer can always pay a pre-
mium for higher delivery quality. Although this is largely true
for a capable supplier, we find that adjusting payment terms
may have limited effect on the expected delivery quality under
exact specification, especially when the supplier’s production
process is less capable. From a managerial point of view, then,
using vague specification can be a Pareto improvement over
increasing unit payment w, because the former approach may
achieve similar quality level without costly increase in unit
payment to the supplier. Similarly, using vague specification
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can also be superior to raising unit penalty p, because the
latter approach increases the supplier’s default risk (or the
supplier may choose not to participate).

In contrast, a subsidy on leftovers can be effective in rais-
ing the expected delivery quality. A key reason is that, besides
making the supplier’s production cheaper, with subsidy the
buyer can always obtain the best q units, just as with vague
specification. The increased delivery quality, however, should
be balanced with the increased subsidy cost, which may
reduce the attractiveness of full subsidy from the buyer’s
perspective. We note that the buyer does not have to fully
subsidize all leftovers, and that a partial subsidy for limited
number of leftovers can achieve an expected delivery quality
level close to that under full subsidy. From the buyer’s point
of view, then, a partial subsidy policy can be more attractive
because it is less costly and yet achieves similar quality levels.

In summary, subsidies on excess units can be more
effective than raising unit payment w or penalty p, and a
sufficiently high subsidy (under exact specification) can out-
perform vague specification in terms of the expected delivery
quality. Subsidy, however, does require the buyer to share
more supply risk (e.g., coping with excess units), and there-
fore the buyer may or may not prefer subsidy to vague
specification, depending on the tradeoff between increased
quality level and the added cost.

5.4. Limitations and Future Extensions

In this work, we largely ignore the role of demand uncer-
tainty on the effectiveness of vague specification. Part of the
reason is that demand uncertainty may only have limited
impact on the supplier’s incentives brought on by vague spec-
ification, because the buyer needs to determine its order quan-
tity ex ante. From the supplier’s perspective, then, demand
uncertainty is insulated by the buyer. Demand uncertainty
also has limited impact if the buyer uses vague specification
in an initial small order to test the supplier’s capability.

On the other hand, demand uncertainty may influence the
attractiveness of vague specification in two important ways.
First, if the supplier anticipates future demand uncertainty
when completing the buyer’s initial test order, the supplier’s
incentive to build quantity provision could be influenced
by how large the future demand is going to be. Significant
demand uncertainty will cloud the supplier’s estimation of
future orders, and thus skew the supplier’s quantity provi-
sion incentives. Such effect could be particularly acute if
the supplier is risk averse. Second, demand uncertainty may
also influence the buyer’s bargaining power with the supplier.
With significant demand uncertainty, the buyer may not be
able to convince the supplier of any significant future busi-
ness, potentially depriving the buyer of its decision right. A
significant loss of decision right may render vague specifica-
tion un-implementable by the buyer. In such cases, one may

have to resort to ex-post bilateral Nash bargaining frame-
work to investigate the impact of vague specification on the
supplier’s quantity provision and expected delivery quality.

Given that quality requirements play a central role in any
business transactions, we hope that future work on the above
extensions, for example, demand uncertainty, risk aversion,
and bilateral bargaining, will further our understanding of
how quality requirements influence the supplier’s quality
provisions.

APPENDIX: PROOFS

PROOF OF PROPOSITION 1: Part (a). We prove the proposition state-
ment by contradiction. If πε is an optimal allocation policy and it indicates
Aπε as a sum of at least two disjoint subsets A

πε

1 and A
πε

2 , then there exists
at least one element x /∈ A

πε

1 ∪ A
πε

2 , such that arg miny∈A
πε
1

F−1
ε (y/Q) <

F−1
ε (x/Q) < arg miny∈A

πε
2

F−1
ε (y/Q). Now construct an allocation policy

π ′
ε by replacing the smallest element in A

πε

1 with x. By (2), v(Q|π ′
ε) ≥

v(Q|πε) for any given Q. If x is a set instead of an element, then continue
the construction of π ′

ε until the gap between A
πε

1 and A
πε

2 is filled. Thus, we
have obtained an alternative allocation policy π ′

ε which indicates a single
set Aπ ′

ε that is no worse than πε . Part (b). Follows directly from part (a).
Part (c). By part (b), Aπε is defined by a single vector �a = (a0, a1) such that
a1 = a0 + q. By (3) and after some algebra, we have

∂v(Q|πε)

∂a0

= Eε

[
(w + p)

(
G

(
F−1

ε ((a0 + q)/Q)
)

− G
(
F−1

ε (a0/Q)
))]

+ Eε

[
s
(
F−1

ε (a0/Q)
)

− s
(
F−1

ε ((a0 + q)/Q)
)]

. (A1)

The proposition statement is true if ∂v(Q|πε)/∂a0 ≤ 0 for any a0 ≥ Fε(l)Q

under exact specification. Note a0 ≥ Fε(l)Q ⇒ F−1
ε (a0/Q) ≥ l ⇒

G(F−1
ε (a0/Q)) = 1 ⇒ G(F−1

ε ((a0 + q)/Q)) = 1. Substituting this
into (A1), we have ∂v(Q|πε)/∂a0 = Eε [s(F−1

ε (a0/Q)) − s(F−1
ε ((a0 +

q)/Q))] ≤ 0, where the inequality follows from the fact that s′(x) ≥ 0.
Hence, the supplier’s expected profit increases in a0 up to the point at a0 =
Fε(l)Q and then decreases beyond that point. It follows that it is optimal to set
a0 = min{Fε(l)Q, Q−q} under the exact specification. Part (d). The propo-
sition statement is true if v(Q|πε) increases in a0. Let x1 = F−1

ε (a0/Q) and
x2 = F−1

ε ((a0 + q)/Q). Then, (A1) can be simplified to ∂v(Q|πε)/∂a0 =
Eε [{(w + p)G(x2) − s(x2)} − {(w + p)G(x1) − s(x1)}] ≥ 0, where the
inequality follows from Assumption 1 and the fact that x2 > x1. �

PROOF OF PROPOSITION 2: Substituting a0 = Q − q into (3) (and
after some algebra), we have

v(Q|πε) = −cQ + Eε

[
(w + p)qG

(
F−1

ε (1 − q/Q)
)

− pq

+ (w + p)Q

∫ x≤F−1
ε (1)

x>F−1
ε (1−q/Q)

F ε(x)dG(x)

+Q

∫ 1−q/Q

0
s
(
F−1

ε (z)
)

dz

]
. (A2)

It follows that

v′(Q|πε) = −c + Eε

[
(w + p)

∫ x≤F−1
ε (1)

x>F−1
ε (1−q/Q)

F ε(x)dG(x)

+
∫ 1−q/Q

0
s
(
F−1

ε (z)
)

dz + (q/Q)s
(
F−1

ε (1 − q/Q)
)]

,

(A3)
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and v′′(Q) = Eε

[
−(w + p)

q2

Q3
G′(F−1

ε (1−q/Q))

F ′
l|ε [F−1

ε (1−q/Q)] + q2

Q3
s′(F−1

ε (1−q/Q))

F ′
l|ε [F−1

ε (1−q/Q)]

]
< 0,

where the inequality follows from Assumption 1. Note that (4) is obtained
by setting (A3) equal to zero. �

PROOF OF PROPOSITION 3: Part (a). First we adapt (3) to the exact
specification. By Proposition 1, the optimal allocation sets a0 =
min{Fε(l)Q, Q − q}. Let ε be the unique solution to Fε(l) = 1 − q/Q.
We have

v(Q|πε) = Eε|ε≤ε

∫
x

(
w

∫ Q

Q−q

1
(
F−1

ε (y/Q) ≥ x
)

dy

− p

∫ Q

Q−q

1
(
F−1

ε (y/Q) < x
)

dy

)
dG(x)

+ Eε|ε≤ε

∫ Q

0
s
(
F−1

ε (y/Q)
)

1
(
F−1

ε (y/Q) < x
)

dy

+ Eε|ε>ε

∫
x

(
w

∫ Fε(l)Q+q

Fε (l)Q

1
(
F−1

ε (y/Q) ≥ x
)

dy

− p

∫ Fε(l)Q+q

Fε (l)Q

1
(
F−1

ε (y/Q) < x
)

dy

)
dG(x)

+ Eε|ε>ε

∫ Fε(l)Q

0
s
(
F−1

ε (y/Q)
)

dy

+ Eε|ε>ε

∫ Q

Fε(l)Q+q

s
(
F−1

ε (y/Q)
)

dy − cQ

= Eε|ε≤ε

[
(w + p)F ε(l)Q − pq + Q

∫ Fε(l)

0
s
(
F−1

ε (z)
)

dz

]

+ Eε|ε>ε

[
wq + Q

∫ Fε(l)

0
s
(
F−1

ε (z)
)

dz

+ Q

∫ 1

Fε(l)+q/Q

s
(
F−1

ε (z)
)

dz

]
− cQ. (A4)

We now prove the proposition statement by contradiction. Suppose the
supplier chooses an optimal production lot size Q∗ such that Fε(l) ≥
q/Q for any realized ε. Then, (A4) simplifies to v(Q|πε) = Eε [wq +
Q

∫ Fε(l)

0 s
(
F−1

ε (z)
)
dz + Q

∫ 1
Fε(l)+q/Q

s
(
F−1

ε (z)
)
dz] − cQ. It follows

that v′(Q|πε) = Eε [
∫ Fε(l)

0 s(F−1
ε (z))dz + ∫ 1

Fε(l)+q/Q
s(F−1

ε (z))dz +
(q/Q)s(F−1

ε (Fε(l) + q/Q))] − c < Eε [
∫ Fε(l)

0 cdz + ∫ 1
Fε(l)+q/Q

cdz +
(q/Q)c] − c = c − c = 0. This suggests v(Q|πε) is strictly decreasing
in Q if Fε(l) ≥ q/Q for any realized ε, thus contradicting the assump-
tion that Q∗ is optimal. Part (b). First, consider the special case where
salvage value is constant, that is, s(x) = s. Then, (4) can be simplified

to Eε [(w + p)
∫ F−1

ε (1)

F−1
ε (1−q/Q)

F ε(x)dG(x) + s] = c. It follows that

Eε

[∫ F−1
ε (1)

F−1
ε (1−q/Q)

F ε(x)dG(x)

]
= c − s

w + p
. (A5)

Consider the LHS of (A5) inside the expectation operator, we have

∫ F−1
ε (1)

F−1
ε (1−q/Q)

F ε(x)dG(x) =
∫ F−1

ε (1)

F−1
ε (1−q/Q)

G(x)dFε(x)

− (q/Q)G(F−1
ε (1 − q/Q))

≥
∫ F−1

ε (1)

F−1
ε (1−q/Q)

G(F−1
ε (1 − q/Q))dFε(x)

− (q/Q)G(F−1
ε (1 − q/Q)) = 0,

where the inequality is strict if G(F−1
ε (1 − q/Q)) < 1. Hence, even if

Fε(l) ≥ q/Q ⇒ F−1
ε (1 − q/Q) ≥ l for any realized ε, as long as

G(l + δ) < 1 (where δ = F−1
ε (1 − q/Q) − l), then (A5) can hold as

an interior solution for sufficiently small (c − s)/(w + p), that is, the opti-
mal lot size Q can guarantee that Fε(l) ≥ q/Q for any realized ε. Now,
if unit salvage value is increasing in quality level x, then it only serves to
increase the optimal lot size, which makes the above analysis more likely to
hold. �

PROOF OF PROPOSITION 4: We prove the proposition statement for
upper mean varying spread, that is, when Ĝ(·) first-order stochastically dom-
inates G(·). The case with lower mean-varying spread can be analogously
proved. First note that expected delivery quality τ(Q) (see (5)) is a monot-
one increasing function in Q, and hence we only need to characterize the
effect of Ĝ(·) on the optimal production quantity Q. By (4), specification
vagueness in G(·) affects the optimal production quantity through the first
term in LHS of (4) only. For expositional ease, define

ψG(ε) =
∫ F−1

ε (1)

F−1
ε (1−q/Q)

F ε(u)dG(u), (A6)

Because ψG(ε) is a decreasing function in Q, if specification vague-
ness in G(·) results in an increase in ψG(ε) (for any given Q), then
condition (4) implies that the optimal production quantity Q must
increase, which leads to increased expected delivery quality τ(Q). Now,

ψĜ(ε) − ψG(ε) = ∫ F−1
ε (1)

F−1
ε (1− q

Q
)
F ε(u)d[Ĝ(u) − G(u)] = [G(F−1

ε (1 −

q/Q)) − Ĝ(F−1
ε (1 − q/Q))]q/Q + ∫ F−1

ε (1)

F−1
ε (1− q

Q
)
fε(u)[Ĝ(u) − G(u)]du

= ∫ F−1
ε (1)

F−1
ε (1− q

Q
)
fε(u)[Ĝ(F−1

ε (1 − q/Q)) − G(F−1
ε (1 − q/Q))]du −∫ F−1

ε (1)

F−1
ε (1− q

Q
)
fε(u)[G(u) − Ĝ(u)]du. Now, if F−1

ε (1 − q
Q

) <= l, vĜ(ε) −

vG(ε) = − ∫ F−1
ε (1)

F−1
ε (1− q

Q
)
fε(u)[G(u) − Ĝ(u)]du > 0. Consider F−1

ε (1 −
q
Q

) > l. Note that G(x) − Ĝ(x) decreases in x for x > l.

Hence,
∫ F−1

ε (1)

F−1
ε (1− q

Q
)
fε(u)[Ĝ(F−1

ε (1 − q/Q)) − G(F−1
ε (1 − q/Q))]du ≥∫ F−1

ε (1)

F−1
ε (1− q

Q
)
fε(u)[G(u) − Ĝ(u)]du ⇒ ψĜ(ε) − ψG(ε) ≥ 0. The propo-

sition statement then follows from the fact that ψĜ(ε) ≥ ψG(ε) for any
realized production shock ε and therefore the expectation does not change
the sign of ψĜ(ε) − ψG(ε).

Note that when the salvage value strictly increases in quality level,
that is, s′(x) > 0, and when Ĝ(·) ↓ G(·), the expected delivery qual-
ity is in general not continuous at the limit. To see this, note that when
s′(x) > 0, the expected delivery quality under exact specification is

τE(Q) = Eε

∫ min{Fε(l)Q+q,Q}
min{Fε(l)Q,Q−q} F−1

ε (y/Q)dy. Partition ε into 
1 = {ε :
Fε(l)Q > Q − q} and 
2 = {ε : Fε(l)Q ≤ Q − q}. We have

τE(Q) = Eε|
1

∫ Q

Q−q
F−1

ε (y/Q)dy + Eε|
2

∫ Fε(l)Q+q

Fε (l)Q F−1
ε (y/Q)dy =

Q[Eε|
1

∫ 1
1−q/Q

F−1
ε (z)dz + Eε|
2

∫ Fε(l)+q/Q

Fε(l) F−1
ε (z)dz]. It follows that

∂τE(Q)/∂Q = Eε|
1 [
∫ 1

1−q/Q
F−1

ε (z)dz − (q/Q)F−1
ε (1 − q/Q)] +

Eε|
2 [
∫ Fε(l)+q/Q

Fε(l) F−1
ε (z)dz − (q/Q)F−1

ε (Fε(l) + q/Q)]. Notice that the
first term in the square bracket is positive, whereas the second term is nega-
tive, and hence an increase in Q does not necessarily improves the expected
delivery quality. Now, suppose Ĝ(·) is an epsilon change from G(·), that is,
Ĝ(·) is a limiting case of the vague specification, then the supplier allocates
the best q units under Ĝ(·). Adapting (4) to the exact specification case [fol-
lowing similar approach as that in (A4)], one can prove that the optimal Q

under Ĝ(·) is less than that under G(·), even as Ĝ(·) ↓ G(·). Hence, at limit
the expected delivery quality between the vague and the exact specification
can have a persistent gap, which is caused by the fact that the allocation
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policy changes from allocating the best q units to allocating from the unit
that just meets the specification. Therefore, when s′(x) > 0 and Ĝ(·) is
arbitrarily close to G(·), the magnitude effect of vague specification can be
ambiguous. �

PROOF OF PROPOSITION 5: Given kF (x) = λ, let Fε(x) = 1 −
exp(−λx). There is no loss of generality in assuming this functional form,
because alternative forms of exponential family such as ecFε(x)+ d, where
c and d are constants, do not change the rankings of ψĜ(ε) and ψG(ε) - see
Ref. [35] (p. 126). Part (a). We adopt the similar proof approach in Ref. [19]
(p. 1054). By (A6),

ψĜ(ε) − ψG(ε) =
∫ F−1

ε (1)

F−1
ε (1− q

Q
)

F ε(u)dĜ(u) −
∫ F−1

ε (1)

F−1
ε (1− q

Q
)

F ε(u)dG(u)

=
∫ F−1

ε (1)

F−1
ε (1− q

Q
)

e−λu[dĜ(u) − dG(u)]

=
∫ lA

F−1
ε (1− q

Q
)

e−λu[dĜ(u) − dG(u)]

+
∫ F−1

ε (1)

lA

e−λu[dĜ(u) − dG(u)],

where the first term is positive because dĜ(u)−dG(u) > 0 for u < lA. Now,
if the magnitude of the first term is greater than that of the second term, then
ψĜ(ε)−ψG(ε) is positive regardless of whether the second term is positive
or negative. This indeed is the case, because, the first term declines slower
than the second term as the exponents in the first term are smaller (less than
lA) than that in the second term. Hence, for sufficiently large λ > λ, the
magnitude of the first term will surpass that of the second term, with a result
that ψĜ(ε) − ψG(ε) > 0. Part (b) follows analogously from part (a). �

PROOF OF PROPOSITION 6: To capture the case where λ can be either
positive or negative, let Fε(x) = (1 − e−λx)/λ. We have

ψĜ(ε) − ψG(ε) =
∫ F−1

ε (1)

F−1
ε (1− q

Q
)

(
1 − (1 − e−λu)/λ

) [dĜ(u) − dG(u)]

= [Ĝ(u) − G(u)] (
1 − (1 − e−λ)/λ

)∣∣F−1
ε (1)

F−1
ε (1− q

Q
)

+
∫ F−1

ε (1)

F−1
ε (1− q

Q
)

e−λu[Ĝ(u) − G(u)]du

= [Ĝ(F−1
ε (1 − q/Q)) − G(F−1

ε (1 − q/Q))]q/Q

+
∫ F−1

ε (1)

F−1
ε (1− q

Q
)

e−λu[Ĝ(u) − G(u)]du.

By assumption (c), 0 ≤ [Ĝ(F−1
ε (1 − q/Q)) − G(F−1

ε (1 − q/Q))]q/Q <

ι · q/Q < ι, hence we need only focus on the second term in the above
expression. By Ref. [23] (p. 282), e−λu belongs to the class of Pólya
Type ∞ distribution. Also, because Ĝ(·) and G(·) are simply related,
Ĝ(u)−G(u) changes sign once. Hence, by Theorem 3 in Ref. [23] (p. 291),∫ F−1

ε (1)

F−1
ε (1− q

Q
)
e−λu[Ĝ(u)−G(u)]du changes sign at most once. By Proposition

5,
∫ F−1

ε (1)

F−1
ε (1− q

Q
)
e−λu[Ĝ(u)−G(u)]du changes sign at least once as λ changes

from −∞ to ∞. The proposition statement then follows. �

PROOF OF PROPOSITION 7: We follow the similar approach in the
proof of Theorem 3 in Ref. [19] (p. 1056). Part (i). Note that the proposition

statement is true if ψĜ|F2
(ε) − ψG|F2 (ε) ≥ e−M(ψĜ|F1

(ε) − ψG|F1 (ε)) for
any arbitrary M > 0. Recall that

ψĜ|Fi
(ε) − ψG|Fi

(ε) =
∫ F−1

i|ε (1)

F−1
i|ε (1− q

Q
)

F i|ε(u)dĜ(u)

−
∫ F−1

i|ε (1)

F−1
i|ε (1− q

Q
)

F i|ε(u)dG(u)

= F i|ε(u)[Ĝ(u) − G(u)]∣∣F−1
i|ε (1)

F−1
i|ε (1− q

Q
)

+
∫ F−1

i|ε (1)

F−1
i|ε (1− q

Q
)

fi|ε(u)[Ĝ(u) − G(u)]du

= −o(ι) +
∫ F−1

i|ε (1)

F−1
i|ε (1− q

Q
)

fi|ε(u)[Ĝ(u) − G(u)]du,

(A7)

where o(ι) = [G(F−1
i|ε (1 − q/Q)) − Ĝ(F−1

i|ε (1 − q/Q))]q/Q =
ι · q/Q < ι. Consider the last term in (A7). For any given kFi

(x),
its corresponding quality distribution function can be expressed as
Fi|ε(x) = ∫

exp(− ∫ x

0 kFi
(y)dy)dx [35, p. 126]. Hence, fi|ε(x) =

exp(− ∫ x

0 kFi
(y)dy). Substituting fi|ε(x) into the last term in (A7), we have

ψĜ|Fi
(ε) − ψG|Fi

(ε) = −o(ι) +
∫ F−1

i|ε (1)

F−1
i|ε (1− q

Q
)

e
− ∫ u

0 kFi
(y)dy [Ĝ(u) − G(u)]du.

Hence, the proposition statement is proved if

∫ F−1
2|ε (1)

F−1
2|ε (1− q

Q
)

e
− ∫ u

0 kF2 (y)dy [Ĝ(u) − G(u)]du

≥ e−M

∫ F−1
1|ε (1)

F−1
1|ε (1− q

Q
)

e
− ∫ u

0 kF1 (y)dy [Ĝ(u) − G(u)]du. (A8)

Because kF2 (x) > kF1 (x), we have F−1
2|ε (1 − q/Q) ≤ F−1

1|ε (1 − q/Q)

and F−1
2|ε (1) ≤ F−1

1|ε (1). Also, by assumption (d), Ĝ(u) − G(u) ≈ 0 for

u ≥ F−1
2|ε (1). Therefore, (A8) is true if

∫ F−1
2|ε (1)

F−1
1|ε (1− q

Q
)

(
e
− ∫ u

0 kF2 (y)dy − e
−M−∫ u

0 kF1 (y)dy
)

[Ĝ(u) − G(u)]du > 0.

(A9)

Recall that Ĝ(u) and G(u) are simply related and Ĝ(u) > G(u) for u < l

and Ĝ(u) < G(u) for u > l. Hence, if e
− ∫ u

0 kF2 (y)dy − e
−M−∫ u

0 kF1 (y)dy

has the same sign pattern as Ĝ(u) − G(u) then (A9) is true. Select M

such that e
− ∫ l

0 kF2 (y)dy = e
−M−∫ l

0 kF1 (y)dy . Because kF2 (x) > kF1 (x), we
have

∫ u

0 kF2 (y)dy < M + ∫ u

0 kF1 (y)dy for u < l and
∫ u

0 kF2 (y)dy >

M + ∫ u

0 kF1 (y)dy for u > l. Hence, e− ∫ u
0 kF2 (y)dy − e

−M−∫ u
0 kF1 (y)dy indeed

has the same sign pattern as Ĝ(u)−G(u) in (A9). Part (ii) of the proposition
statement can be analogously proved. �
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